Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.385
Filter
1.
Toxicol Ind Health ; 40(1-2): 23-32, 2024.
Article in English | MEDLINE | ID: mdl-37921628

ABSTRACT

This toxicology study was conducted to assess the impact of formaldehyde, a common air pollutant found in Chinese gymnasiums, on the brain function of athletes. In this research, a total of 24 Balb/c male mice of SPF-grade were divided into four groups, each consisting of six mice. The mice were exposed to formaldehyde at different concentrations, including 0 mg/m3, 0.5 mg/m3, 3.0 mg/m3, and 3.0 mg/m3 in combination with an injection of L-NMMA (NG-monomethyl-L-arginine), which is a nitric oxide synthase antagonist. Following a one-week test period (8 h per day, over 7 days), measurements of biomarkers related to the nitric oxide (NO)/cGMP-cAMP signaling pathway were carried out on the experimental animals post-treatment. The study found that: (1) Exposure to formaldehyde can lead to brain cell apoptosis and neurotoxicity; (2) Additionally, formaldehyde exposure was found to alter the biomarkers of the NO/cGMP-cAMP signaling pathway, with some changes being statistically significant (p < 0.05 or p < 0.01); (3) The use of L-NMMA, an antagonist of the NO/cGMP-cAMP signaling pathway, was found to prevent these biomarker changes and had a protective effect on brain cells. The study suggests that the negative impact of formaldehyde on the brain function of mice is linked to the regulation of the NO/cGMP-cAMP signaling pathway.


Subject(s)
Cyclic GMP , Nitric Oxide , Respiratory Hypersensitivity , Humans , Male , Mice , Animals , omega-N-Methylarginine/pharmacology , Nitric Oxide/metabolism , Mice, Inbred BALB C , Cyclic GMP/pharmacology , Formaldehyde/toxicity , Signal Transduction , Brain/metabolism , Biomarkers
2.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R759-R768, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37842740

ABSTRACT

Animal data indicate that insulin triggers a robust nitric oxide synthase (NOS)-mediated dilation in cerebral arteries similar to the peripheral tissue vasodilation observed in healthy adults. Insulin's role in regulating cerebral blood flow (CBF) in humans remains unclear but may be important for understanding the links between insulin resistance, diminished CBF, and poor brain health outcomes. We tested the hypothesis that an oral glucose challenge (oral glucose tolerance test, OGTT), which increases systemic insulin and glucose, would acutely increase CBF in healthy adults due to NOS-mediated vasodilation, and that changes in CBF would be greater in anterior regions where NOS expression or activity may be greater. In a randomized, single-blind approach, 18 young healthy adults (24 ± 5 yr) underwent magnetic resonance imaging (MRI) with a placebo before and after an OGTT (75 g glucose), and 11 of these adults also completed an NG-monomethyl-l-arginine (l-NMMA) visit. Four-dimensional (4-D) flow MRI quantified macrovascular CBF and arterial spin labeling (ASL) quantified microvascular perfusion. Subjects completed baseline imaging with a placebo (or l-NMMA), then consumed an OGTT followed by MRI scans and blood sampling every 10-15 min for 90 min. Contrary to our hypothesis, total CBF (P = 0.17) and global perfusion (P > 0.05) did not change at any time point up to 60 min after the OGTT, and no regional changes were detected. l-NMMA did not mediate any effect of OGTT on CBF. These data suggest that insulin-glucose challenge does not acutely alter CBF in healthy adults.


Subject(s)
Enzyme Inhibitors , Nitric Oxide Synthase , Adult , Animals , Humans , omega-N-Methylarginine/pharmacology , Glucose Tolerance Test , Enzyme Inhibitors/pharmacology , Single-Blind Method , Cerebrovascular Circulation , Glucose/metabolism , Insulin/pharmacology
3.
Eur J Pharmacol ; 960: 176111, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37863413

ABSTRACT

Myopia is one of the most prevalent eye diseases that seriously threaten the eyesight of children and adolescents worldwide. However, the pathogenesis is still unclear, and effective drugs are still scarce. In the present study, the guinea pigs were randomly divided into a normal control (NC) group, a lens-induced myopia (LIM) group, a NOS inhibitor (L-NMMA) injection group, and a NOS inhibitor solvent phosphate-buffered saline (PBS) group and the animals received relevant treatments. After 2- and 4-week different treatments, we noted that the refraction and choroidal thickness in the LIM group decreased compared with the NC group, whereas the ocular axial length increased significantly, and the choroid showed a fibrotic trend. The expression of NOS1, NOS3, TGF-ß1, COLI, and α-SMA at gene and protein levels was increased significantly in the choroid (all P < 0.05). After intravitreal injection of NOS inhibitor L-NMMA, we found that compared with the LIM group, the refraction and the choroidal thickness significantly increased, whereas the axial length reduced significantly, accompanied by an increase of choroidal thickness and an improvement of choroidal fibrosis. The expression levels of choroidal NOS1, NOS3, TGF-ß, COLI, and α-SMA were significantly reduced (all P < 0.05). In conclusion, the trend of choroidal fibrosis in LIM guinea pigs is positively correlated with the increase in axial length. The NOS inhibitor L-NMMA can alleviate the process of choroidal fibrosis in myopic guinea pigs by inhibiting NO signaling pathway.


Subject(s)
Myopia , Nitric Oxide , Child , Guinea Pigs , Animals , Humans , Adolescent , omega-N-Methylarginine/pharmacology , Nitric Oxide/pharmacology , Myopia/chemically induced , Myopia/drug therapy , Myopia/metabolism , Choroid/metabolism , Choroid/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Signal Transduction , Nitric Oxide Synthase
4.
Amino Acids ; 55(2): 215-233, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36454288

ABSTRACT

Protein arginine N-methyltransferases (PRMTs) have emerged as important actors in the eukaryotic stress response with implications in human disease, aging, and cell signaling. Intracellular free methylarginines contribute to cellular stress through their interaction with nitric oxide synthase (NOS). The arginine-dependent production of nitric oxide (NO), which is strongly inhibited by methylarginines, serves as a protective small molecule against oxidative stress in eukaryotic cells. NO signaling is highly conserved between higher and lower eukaryotes, although a canonical NOS homologue has yet to be identified in yeast. Since stress signaling pathways are well conserved among eukaryotes, yeast is an ideal model organism to study the implications of PRMTs and methylarginines during stress. We sought to explore the roles and fates of methylarginines in Saccharomyces cerevisiae. We starved methyltransferase-, autophagy-, and permease-related yeast knockouts by incubating them in water and monitored methylarginine production. We found that under starvation, methylarginines are expelled from yeast cells. We found that autophagy-deficient cells have an impaired ability to efflux methylarginines, which suggests that methylarginine-containing proteins are degraded via autophagy. For the first time, we determine that yeast take up methylarginines less readily than arginine, and we show that methylarginines impact yeast NO production. This study reveals that yeast circumvent a potential methylarginine toxicity by expelling them after autophagic degradation of arginine-modified proteins.


Subject(s)
Nitric Oxide , Saccharomyces cerevisiae , Humans , omega-N-Methylarginine/metabolism , omega-N-Methylarginine/pharmacology , Saccharomyces cerevisiae/metabolism , Nitric Oxide/metabolism , Arginine/metabolism , Nitric Oxide Synthase/metabolism , Nutrients
5.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5900-5907, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472009

ABSTRACT

This study was designed to determine the inhibitory effect of astragaloside Ⅳ(AS-Ⅳ), a principal bioactive component extracted from the Chinese medicinal Astragali Radix, on the inflammatory response of vascular endothelial cells induced by angiotensin Ⅱ(Ang Ⅱ), the most major pathogenic factor for cardiovascular diseases, and to clarify the role of calcium(Ca~(2+))/phosphatidylinosi-tol-3-kinase(PI3K)/protein kinase B(Akt)/endothelial nitric oxide synthase(eNOS)/nitric oxide(NO) pathway in the process. To be specific, human umbilical vein endothelial cells(HUVECs) were cultured in the presence of AS-Ⅳ with or without the specific inhibitor of NO synthase(NG-monomethyl-L-arginine, L-NMMA), inhibitor of PI3K/Akt signaling pathway(LY294002), or Ca~(2+)-chelating agent(ethylene glycol tetraacetic acid, EGTA) prior to Ang Ⅱ stimulation. The inhibitory effect of AS-Ⅳ on Ang Ⅱ-induced inflammatory response and the involved mechanism was determined with enzyme-linked immunosorbent assay(ELISA), cell-based ELISA assay, Western blot, and monocyte adhesion assay which determined the fluorescently labeled human monocytic cell line(THP-1) adhered to Ang Ⅱ-stimulated endothelial cells. AS-Ⅳ increased the production of NO by HUVECs in a dose-and time-dependent manner(P<0.05) and raised the level of phosphorylated eNOS(P<0.05). The above AS-Ⅳ-induced changes were abolished by pretreatment with L-NMMA, LY294002, or EGTA. Compared with the control group, Ang Ⅱ obviously enhanced the production and release of cytokines(tumor necrosis factor-α, interleukin-6), chemokines(monocyte chemoattractant protein-1) and adhesion molecules(intercellular adhesion molecule-1, vascular cellular adhesion molecule-1), and the number of monocytes adhered to HUVECs(P<0.05), which were accompanied by the enhanced levels of phosphorylated inhibitor of nuclear factor-κBα protein and activities of nuclear factor-κB(NF-κB)(P<0.05). This study also demonstrated that Ang Ⅱ-induced inflammatory response was inhibited by pretreatment with AS-Ⅳ(P<0.05). In addition, the inhibitory effect of AS-Ⅳ was abrogated by pretreatment with L-NMMA, LY294002, or EGTA(P<0.05). This study provides a direct link between AS-Ⅳ and Ca~(2+)/PI3K/Akt/eNOS/NO pathway in AS-Ⅳ-mediated anti-inflammatory actions in endothelial cells exposed to Ang Ⅱ. The results indicate that AS-Ⅳ attenuates endothelial cell-mediated inflammatory response induced by Ang Ⅱ via the activation of Ca~(2+)/PI3K/Akt/eNOS/NO signaling pathway.


Subject(s)
Angiotensin II , Proto-Oncogene Proteins c-akt , Humans , Angiotensin II/metabolism , Angiotensin II/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , omega-N-Methylarginine/metabolism , omega-N-Methylarginine/pharmacology , Egtazic Acid/metabolism , Egtazic Acid/pharmacology , Human Umbilical Vein Endothelial Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide/metabolism , Cells, Cultured
6.
World J Gastroenterol ; 28(29): 3854-3868, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36157548

ABSTRACT

BACKGROUND: The mechanisms underlying gastrointestinal (GI) dysmotility with ulcerative colitis (UC) have not been fully elucidated. The enteric nervous system (ENS) plays an essential role in the GI motility. As a vital neurotransmitter in the ENS, the gas neurotransmitter nitric oxide (NO) may impact the colonic motility. In this study, dextran sulfate sodium (DSS)-induced UC rat model was used for investigating the effects of NO by examining the effects of rate-limiting enzyme nitric oxide synthase (NOS) changes on the colonic motility as well as the role of the ENS in the colonic motility during UC. AIM: To reveal the relationship between the effects of NOS expression changes in NOS-containing nitrergic neurons and the colonic motility in a rat UC model. METHODS: Male rats (n = 8/each group) were randomly divided into a control (CG), a UC group (EG1), a UC + thrombin derived polypeptide 508 trifluoroacetic acid (TP508TFA; an NOS agonist) group (EG2), and a UC + NG-monomethyl-L-arginine monoacetate (L-NMMA; an NOS inhibitor) group (EG3). UC was induced by administering 5.5% DSS in drinking water without any other treatment (EG1), while the EG2 and EG3 were gavaged with TP508 TFA and L-NMMA, respectively. The disease activity index (DAI) and histological assessment were recorded for each group, whereas the changes in the proportion of colonic nitrergic neurons were counted using immunofluorescence histochemical staining, Western blot, and enzyme linked immunosorbent assay, respectively. In addition, the contractile tension changes in the circular and longitudinal muscles of the rat colon were investigated in vitro using an organ bath system. RESULTS: The proportion of NOS-positive neurons within the colonic myenteric plexus (MP), the relative expression of NOS, and the NOS concentration in serum and colonic tissues were significantly elevated in EG1, EG2, and EG3 compared with CG rats. In UC rats, stimulation with agonists and inhibitors led to variable degrees of increase or decrease for each indicator in the EG2 and EG3. When the rats in EGs developed UC, the mean contraction tension of the colonic smooth muscle detected in vitro was higher in the EG1, EG2, and EG3 than in the CG group. Compared with the EG1, the contraction amplitude and mean contraction tension of the circular and longitudinal muscles of the colon in the EG2 and EG3 were enhanced and attenuated, respectively. Thus, during UC, regulation of the expression of NOS within the MP improved the intestinal motility, thereby favoring the recovery of intestinal functions. CONCLUSION: In UC rats, an increased number of nitrergic neurons in the colonic MP leads to the attenuation of colonic motor function. To intervene NOS activity might modulate the function of nitrergic neurons in the colonic MP and prevent colonic motor dysfunction. These results might provide clues for a novel approach to alleviate diarrhea symptoms of UC patients.


Subject(s)
Colitis, Ulcerative , Drinking Water , Nitrergic Neurons , Animals , Male , Rats , Colitis, Ulcerative/pathology , Colon/pathology , Dextran Sulfate/toxicity , Gastrointestinal Motility , Nitrergic Neurons/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , omega-N-Methylarginine/metabolism , omega-N-Methylarginine/pharmacology , Thrombin/metabolism , Trifluoroacetic Acid/metabolism , Trifluoroacetic Acid/pharmacology
7.
Clin Hemorheol Microcirc ; 82(1): 1-12, 2022.
Article in English | MEDLINE | ID: mdl-35599472

ABSTRACT

BACKGROUND: Exercise-induced impairment of blood fluidity is considered to be associated with thrombosis development. However, the effects of L-arginine on blood fluidity after exercise remain unclear. OBJECTIVE: We investigated the mechanisms of impaired blood fluidity after high-intensity exercise, and examined whether L-arginine improves exercise-induced blood fluidity impairment in vitro. METHODS: Ten healthy male participants performed 15 minutes of ergometer exercise at 70% of their peak oxygen uptake levels. Blood samples were obtained before and after exercise. L-arginine and NG-monomethyl-L-arginine acetate (L-NMMA)-a nitric oxide (NO) synthase inhibitor-were added to the post-exercise blood samples. Using Kikuchi's microchannel method, we measured the blood passage time, percentage of obstructed microchannels, and the number of adherent white blood cells (WBCs) on the microchannel terrace. RESULTS: Exercise increased the hematocrit levels. The blood passage times, percentage of obstructed microchannels, and the number of adherent WBCs on the microchannel terrace increased after exercise; however, they decreased in a dose-dependent manner after the addition of L-arginine. L-NMMA inhibited the L-arginine-induced decrease in blood passage time. CONCLUSIONS: High-intensity exercise impairs blood fluidity by inducing hemoconcentration along with increasing platelet aggregation and WBC adhesion. The L-arginine-NO pathway improves blood fluidity impairment after high-intensity exercise in vitro.


Subject(s)
Arginine , Nitric Oxide , Humans , Male , omega-N-Methylarginine/pharmacology , Arginine/pharmacology , Exercise , Leukocytes , Platelet Aggregation
8.
Behav Brain Res ; 422: 113750, 2022 03 26.
Article in English | MEDLINE | ID: mdl-35033612

ABSTRACT

Nitric oxide (NO)-dependent pathways may play a significant role in the decline of synaptic and cognitive functions in Alzheimer's disease (AD). However, whether NO in the hippocampal dentate gyrus (DG) is involved in the spatial learning and memory impairments of AD by affecting the glutamate (Glu) response during these processes is not well-understood. Here, we prepared an AD rat model by long-term i.p. of D-galactose into ovariectomized rats, and then the effects of L-NMMA (a NO synthase inhibitor) on Glu concentration and amplitude of field excitatory postsynaptic potential (fEPSP) were measured in the DG region during the Morris water maze (MWM) test in freely-moving rats. During the MWM test, compared with the sham group, the escape latency was increased in the place navigation trial, and the percentage of time spent in target quadrant and the number of platform crossings were decreased in the spatial probe trial, in addition, the increase of fEPSP amplitude in the DG was significantly attenuated in AD group rats. L-NMMA significantly attenuated the spatial learning and memory impairment in AD rats, and reversed the inhibitory effect of AD on increase of fEPSP amplitude in the DG during the MWM test. In sham group rats, the Glu level in the DG increased significantly during the MWM test, and this response was markedly enhanced in AD rats. Furthermore, the response of Glu in the DG during spatial learning was recovered by microinjection of L-NMMA into the DG. Our results suggest that NO in the DG impairs spatial learning and memory and related synaptic plasticity in AD rats, by disturbing the Glu response during spatial learning.


Subject(s)
Alzheimer Disease , Behavior, Animal , Dentate Gyrus , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials , Glutamic Acid/metabolism , Maze Learning , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/physiopathology , Disease Models, Animal , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Maze Learning/drug effects , Maze Learning/physiology , Ovariectomy , Rats , Rats, Sprague-Dawley , omega-N-Methylarginine/pharmacology
9.
J Physiol ; 600(6): 1385-1403, 2022 03.
Article in English | MEDLINE | ID: mdl-34904229

ABSTRACT

Cerebrovascular CO2 reactivity (CVR) is often considered a bioassay of cerebrovascular endothelial function. We recently introduced a test of cerebral shear-mediated dilatation (cSMD) that may better reflect endothelial function. We aimed to determine the nitric oxide (NO)-dependency of CVR and cSMD. Eleven volunteers underwent a steady-state CVR test and transient CO2 test of cSMD during intravenous infusion of the NO synthase inhibitor NG -monomethyl-l-arginine (l-NMMA) or volume-matched saline (placebo; single-blinded and counter-balanced). We measured cerebral blood flow (CBF; duplex ultrasound), intra-arterial blood pressure and PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ . Paired arterial and jugular venous blood sampling allowed for the determination of trans-cerebral NO2- exchange (ozone-based chemiluminescence). l-NMMA reduced arterial NO2- by ∼25% versus saline (74.3 ± 39.9 vs. 98.1 ± 34.2 nM; P = 0.03). The steady-state CVR (20.1 ± 11.6 nM/min at baseline vs. 3.2 ± 16.7 nM/min at +9 mmHg PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ ; P = 0.017) and transient cSMD tests (3.4 ± 5.9 nM/min at baseline vs. -1.8 ± 8.2 nM/min at 120 s post-CO2 ; P = 0.044) shifted trans-cerebral NO2- exchange towards a greater net release (a negative value indicates release). Although this trans-cerebral NO2- release was abolished by l-NMMA, CVR did not differ between the saline and l-NMMA trials (57.2 ± 14.6 vs. 54.1 ± 12.1 ml/min/mmHg; P = 0.49), nor did l-NMMA impact peak internal carotid artery dilatation during the steady-state CVR test (6.2 ± 4.5 vs. 6.2 ± 5.0% dilatation; P = 0.960). However, l-NMMA reduced cSMD by ∼37% compared to saline (2.91 ± 1.38 vs. 4.65 ± 2.50%; P = 0.009). Our findings indicate that NO is not an obligatory regulator of steady-state CVR. Further, our novel transient CO2 test of cSMD is largely NO-dependent and provides an in vivo bioassay of NO-mediated cerebrovascular function in humans. KEY POINTS: Emerging evidence indicates that a transient CO2 stimulus elicits shear-mediated dilatation of the internal carotid artery, termed cerebral shear-mediated dilatation. Whether or not cerebrovascular reactivity to a steady-state CO2 stimulus is NO-dependent remains unclear in humans. During both a steady-state cerebrovascular reactivity test and a transient CO2 test of cerebral shear-mediated dilatation, trans-cerebral nitrite exchange shifted towards a net release indicating cerebrovascular NO production; this response was not evident following intravenous infusion of the non-selective NO synthase inhibitor NG -monomethyl-l-arginine. NO synthase blockade did not alter cerebrovascular reactivity in the steady-state CO2 test; however, cerebral shear-mediated dilatation following a transient CO2 stimulus was reduced by ∼37% following intravenous infusion of NG -monomethyl-l-arginine. NO is not obligatory for cerebrovascular reactivity to CO2 , but is a key contributor to cerebral shear-mediated dilatation.


Subject(s)
Carbon Dioxide , Nitric Oxide , Cerebrovascular Circulation/physiology , Dilatation , Enzyme Inhibitors/pharmacology , Humans , Nitric Oxide Synthase , Nitrogen Dioxide , omega-N-Methylarginine/pharmacology
10.
Am J Physiol Heart Circ Physiol ; 322(1): H25-H35, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34738833

ABSTRACT

Central adiposity is associated with greater sympathetic support of blood pressure. ß-adrenergic receptors (ß-AR) buffer sympathetically mediated vasoconstriction and ß-AR-mediated vasodilation is attenuated in preclinical models of obesity. With this information, we hypothesized ß-AR vasodilation would be lower in obese compared with normal weight adults. Because ß-AR vasodilation in normal weight adults is limited by cyclooxygenase (COX) restraint of nitric oxide synthase (NOS), we further explored the contributions of COX and NOS to ß-AR vasodilation in this cohort. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured and forearm vascular conductance (FVC) was calculated (FVC = FBF/MAP). The rise in FVC from baseline (ΔFVC) was quantified during graded brachial artery infusion of isoproterenol (Iso, 1-12 ng/100 g/min) in normal weight (n = 36) and adults with obesity (n = 22) (18-40 yr old). In a subset of participants, Iso-mediated vasodilation was examined before and during inhibition of NOS [NG-monomethyl-l-arginine (l-NMMA)], COX (ketorolac), and NOS + COX (l-NMMA + ketorolac). Iso-mediated increases in FVC did not differ between groups (P = 0.57). l-NMMA attenuated Iso-mediated ΔFVC in normal weight (P = 0.03) but not adults with obesity (P = 0.27). In normal weight adults, ketorolac increased Iso-mediated ΔFVC (P < 0.01) and this response was lost with concurrent l-NMMA (P = 0.67). In contrast, neither ketorolac (P = 0.81) nor ketorolac + l-NMMA (P = 0.40) altered Iso-mediated ΔFVC in adults with obesity. Despite shifts in COX and NOS, ß-AR vasodilation is preserved in young adults with obesity. These data highlight the presence of a compensatory shift in microvascular control mechanisms in younger humans with obesity.NEW & NOTEWORTHY We examined ß-adrenergic receptor-mediated vasodilation in skeletal muscle of humans with obesity and normal weight. Results show that despite shifts in the contribution of cyclooxygenase and nitric oxide synthase, ß-adrenergic-mediated vasodilation is relatively preserved in young, otherwise healthy adults with obesity. These data highlight the presence of subclinical changes in microvascular control mechanisms early in the obesity process and suggest duration of obesity and/or the addition of primary aging may be necessary for overt dysfunction.


Subject(s)
Muscle, Skeletal/blood supply , Nitric Oxide Synthase Type III/metabolism , Obesity/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Vasodilation , Adrenergic beta-Agonists/pharmacology , Adult , Blood Vessels/drug effects , Blood Vessels/metabolism , Blood Vessels/physiology , Cyclooxygenase Inhibitors/pharmacology , Female , Humans , Isoproterenol/pharmacology , Ketorolac/pharmacology , Male , Nitric Oxide Synthase Type III/antagonists & inhibitors , Obesity/physiopathology , Receptors, Adrenergic, beta/metabolism , omega-N-Methylarginine/pharmacology
11.
Sci Transl Med ; 13(624): eabj5070, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34910551

ABSTRACT

The inducible nitric oxide signaling (iNOS) pathway is associated with poor prognosis in triple-negative breast cancer (TNBC). Prior studies using in vivo models showed that inhibition of the iNOS signaling pathway using the pan-NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) reduced tumor growth and enhanced survival in patients with TNBC. Here, we report a first-in-class phase 1/2 trial of L-NMMA combined with taxane for treating patients with chemorefractory, locally advanced breast cancer (LABC) or metastatic TNBC. We also examined immune cell correlates of chemotherapy response. 35 patients with metastatic TNBC were recruited: 15 in the phase 1 trial and 24 in the phase 2 trial (including 4 recommended phase 2 dose patients from the phase 1 trial). The overall response rate was 45.8% (11 of 24): 81.8% (9 of 11) for patients with LABC and 15.4% (2 of 13) for patients with metastatic TNBC. Among the patients with LABC, three patients had a pathological complete response at surgery (27.3%). Grade ≥3 toxicity was noted in 21% of patients; however, no adverse events were attributed to L-NMMA. Immune cells analyzed by CyTOF indicated that chemotherapy nonresponders showed greater expression of markers associated with M2 macrophage polarization and increased concentrations of circulating IL-6 and IL-10 cytokines. In contrast, chemotherapy responders showed an increase in CD15+ neutrophils in blood, as well as a decrease in arginase (a marker of protumor N2 neutrophils) in tumor biopsies obtained at the end of treatment. L-NMMA combined with taxane warrants further investigation in larger clinical studies of patients with breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Enzyme Inhibitors/pharmacology , Humans , Nitric Oxide/metabolism , Nitric Oxide Synthase/therapeutic use , Taxoids/pharmacology , Taxoids/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , omega-N-Methylarginine/pharmacology , omega-N-Methylarginine/therapeutic use
12.
J Physiol ; 599(22): 4973-4989, 2021 11.
Article in English | MEDLINE | ID: mdl-34587648

ABSTRACT

The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.


Subject(s)
Cerebrovascular Circulation , Nitric Oxide Synthase , Regional Blood Flow , omega-N-Methylarginine , Adult , Female , Humans , Male , Nitric Oxide , Nitric Oxide Synthase/antagonists & inhibitors , Perfusion , Single-Blind Method , Young Adult , omega-N-Methylarginine/pharmacology
13.
Am J Pathol ; 191(12): 2072-2079, 2021 12.
Article in English | MEDLINE | ID: mdl-34560064

ABSTRACT

Bone homeostasis depends on the balance between bone resorption by osteoclasts (OCs) and bone formation by osteoblasts. Bone resorption can become excessive under various pathologic conditions, including rheumatoid arthritis. Previous studies have shown that OC formation is promoted under hypoxia. However, the precise mechanisms behind OC formation under hypoxia have not been elucidated. The present study investigated the role of inducible nitric oxide synthase (iNOS) in OC differentiation under hypoxia. Primary bone marrow cells obtained from mice were stimulated with receptor activator of NF-κB ligand and macrophage colony-stimulating factor to induce OC differentiation. The number of OCs increased in culture under hypoxia (oxygen concentration, 5%) compared with that under normoxia (oxygen concentration, 20%). iNOS gene and protein expression increased in culture under hypoxia. Addition of an iNOS inhibitor under hypoxic conditions suppressed osteoclastogenesis. Addition of a nitric oxide donor to the normoxic culture promoted osteoclastogenesis. Furthermore, insulin-like growth factor 2 expression was significantly altered in both iNOS inhibition experiments and nitric oxide donor experiments. These data might provide clues to therapies for excessive osteoclastogenesis under several hypoxic pathologic conditions, including rheumatoid arthritis.


Subject(s)
Cell Hypoxia/physiology , Nitric Oxide Synthase Type II/physiology , Osteoclasts/physiology , Animals , Bone Resorption/genetics , Bone Resorption/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Hypoxia/drug effects , Cells, Cultured , Enzyme Induction/drug effects , Enzyme Induction/genetics , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia/pathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , Oxygen/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , omega-N-Methylarginine/pharmacology
14.
Tissue Cell ; 73: 101601, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34371290

ABSTRACT

Puerarin regulates the osteoblast differentiation of umbilical cord mesenchymal stem cells. This study, hereby, explored the effects of puerarin on the osteogenic differentiation of dental follicle cells (DFCs) for the first time. Rat DFCs (rDFCs) were isolated and identified. After the rDFCs were treated by Puerarin and cultured in osteogenic induction medium, the viability, osteogenic differentiation, and the activities of alkaline phosphatase (ALP) and nitric oxide (NO) were detected. Besides, the secretion of cyclic guanosine monophosphate (cGMP) and expressions of collagen I, osteocalcin (OC), osteopontin (OPN), runt-related transcription factor 2 (RUNX2), soluble guanylate cyclase (SGC), and protein kinase G 1 (PKG-1) were further determined or quantified. Puerarin enhanced the viability and osteogenic differentiation, and increased the activities of ALP, NO, and cGMP and the expressions of Collagen I, OC, OPN, RUNX2, SGC, and PKG-1 in rDFCs. After the co-treatment with puerarin and L-NMMA (NO synthase inhibitor), the promotive effects of Puerarin on cell viability, osteogenic differentiation, and the expressions of collagen I, OC, OPN, RUNX2, SGC, and PKG-1 in rDFCs were reversed by L-NMMA. Puerarin boosted the osteogenic differentiation of rDFCs by activating the NO pathway.


Subject(s)
Cell Differentiation , Dental Sac/cytology , Isoflavones/pharmacology , Nitric Oxide/metabolism , Osteogenesis , Alkaline Phosphatase , Animals , Animals, Newborn , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Collagen Type I/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases , Guanylate Cyclase/metabolism , Osteocalcin/metabolism , Osteogenesis/drug effects , Osteopontin/metabolism , Rats, Sprague-Dawley , Solubility , omega-N-Methylarginine/pharmacology
15.
J Toxicol Sci ; 45(12): 783-794, 2020.
Article in English | MEDLINE | ID: mdl-33268678

ABSTRACT

Bisphenol A (BPA) interferes the function and development of the central nervous system (CNS), resulting in behavioral abnormalities and memory loss. S-nitrosylation of protein disulfide isomerase (PDI) is increased in brains with sporadic Alzheimer's disease and Parkinson's disease. The aim of the present study was to clarify the role of nitric oxide (NO) in BPA-induced neurotoxicity. Since rotenone induces NO-mediated neurodegeneration through S-nitrosylation of PDI, it was used as a positive control. First, rats were treated with BPA and rotenone, and S-nitrosylation of PDI was detected in rat brain microsomes. BPA and rotenone decreased RNase oxidation activity of PDI concomitant with S-nitrosylation of PDI. Next, to clarify S-nitrosylation of PDI by BPA and rotenone in rat brains, we treated the rat pheochromocytoma cell line PC12 and primary cultured neuron cells from the rat hippocampus with BPA (5 and 10 µM) and rotenone (100 or 200 nM). BPA induced S-nitrosylation of PDI, while NG-monomethyl-L-arginine (L-NMMA), a NOS inhibitor, exerted the opposite effects. Finally, to evaluate the toxicity of BPA in the CNS, we investigated its effects on neurite outgrowth of PC12 and primary cultured neuron cells. BPA inhibited neurite outgrowth of these cells, while L-NMMA reversed this inhibition. The involvement of PDI activity in neurite outgrowth was also examined, and bacitracin, a PDI inhibitor, is shown to decrease neurite outgrowth. Furthermore, the overexpression of PDI, but not a catalytically inactive PDI mutant, enhanced neurite outgrowth. These results suggested that S-nitrosylation of PDI induced by excessive NO caused BPA-induced neurotoxicity.


Subject(s)
Benzhydryl Compounds/toxicity , Brain/metabolism , Hippocampus/cytology , Neuronal Outgrowth/drug effects , Neurotoxins , Phenols/toxicity , Protein Disulfide-Isomerases/metabolism , Rotenone/toxicity , Animals , Depression, Chemical , Male , Nitric Oxide/physiology , Oxidation-Reduction/drug effects , PC12 Cells , Rats , Rats, Sprague-Dawley , Ribonucleases/metabolism , omega-N-Methylarginine/pharmacology
16.
J Physiol ; 598(21): 4927-4939, 2020 11.
Article in English | MEDLINE | ID: mdl-32785972

ABSTRACT

KEY POINTS: Preclinical models have demonstrated that nitric oxide is a key component of neurovascular coupling; this has yet to be translated to humans. We conducted two separate protocols utilizing intravenous infusion of a nitric oxide synthase inhibitor and isovolumic haemodilution to assess the influence of nitric oxide on neurovascular coupling in humans. Isovolumic haemodilution did not alter neurovascular coupling. Intravenous infusion of a nitric oxide synthase inhibitor reduced the neurovascular coupling response by ∼30%, indicating that nitric oxide is integral to neurovascular coupling in humans. ABSTRACT: Nitric oxide is a vital neurovascular signalling molecule in preclinical models, yet the mechanisms underlying neurovascular coupling (NVC) in humans have yet to be elucidated. To investigate the contribution of nitric oxide to NVC in humans, we utilized a visual stimulus paradigm to elicit an NVC response in the posterior cerebral circulation. Two distinct mechanistic interventions were conducted on young healthy males: (1) NVC was assessed during intravenous infusion of saline (placebo) and the non-selective competitive nitric oxide synthase inhibitor NG -monomethyl-l-arginine (l-NMMA, 5 mg kg-1 bolus & subsequent 50 µg kg-1 min-1 maintenance dose; n = 10). The order of infusion was randomized, counterbalanced and single blinded. A subset of participants in this study (n = 4) underwent a separate intervention with phenylephrine infusion to independently consider the influence of blood pressure changes on NVC (0.1-0.6 µg kg-1 min-1 constant infusion). (2) NVC was assessed prior to and following isovolumic haemodilution, whereby 20% of whole blood was removed and replaced with 5% human serum albumin to reduce haemoglobin concentration (n = 8). For both protocols, arterial and internal jugular venous blood samples were collected at rest and coupled with volumetric measures of cerebral blood flow (duplex ultrasound) to quantify resting cerebral metabolic parameters. l-NMMA elicited a 30% reduction in the peak (P = 0.01), but not average (P = 0.11), NVC response. Neither phenylephrine nor haemodilution influenced NVC. Nitric oxide signalling is integral to NVC in humans, providing a new direction for research into pharmacological treatment of humans with dementia.


Subject(s)
Neurovascular Coupling , Nitric Oxide , Cerebrovascular Circulation , Enzyme Inhibitors/pharmacology , Humans , Male , omega-N-Methylarginine/pharmacology
17.
J Am Heart Assoc ; 9(16): e013849, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32781940

ABSTRACT

Background Basal release of nitric oxide (NO) from the vascular endothelium regulates the tone of muscular arteries and resistance vasculature. Effects of NO on muscular arteries could be particularly important during exercise when shear stress may stimulate increased NO synthesis. Methods and Results We investigated acute effects of NO synthase inhibition on exercise hemodynamics using NG-monomethyl-l-arginine (l-NMMA), a nonselective NO synthase -inhibitor. Healthy volunteers (n=10, 5 female, 19-33 years) participated in a 2-phase randomized crossover study, receiving l-NMMA (6 mg/kg, iv over 5 minutes) or placebo before bicycle exercise (25-150 W for 12 minutes). Blood pressure, cardiac output (measured by dilution of soluble and inert tracers) and femoral artery diameter were measured before, during, and after exercise. At rest, l-NMMA reduced heart rate (by 16.2±4.3 bpm relative to placebo, P<0.01), increased peripheral vascular resistance (by 7.0±1.4 mmHg per L/min, P<0.001), mean arterial blood pressure (by 8.9±3.5 mmHg, P<0.05), and blunted an increase in femoral artery diameter that occurred immediately before exercise (change in diameter: 0.14±0.04 versus 0.32±0.06 mm after l-NMMA and placebo, P<0.01). During/after exercise l-NMMA had no significant effect on peripheral resistance, cardiac output, or on femoral artery diameter. Conclusions These results suggest that NO plays little role in modulating muscular artery function during exercise but that it may mediate changes in muscular artery tone immediately before exercise.


Subject(s)
Arteries/enzymology , Exercise/physiology , Muscle, Skeletal/blood supply , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/physiology , Vasodilation/physiology , Adult , Arterial Pressure/drug effects , Arterial Pressure/physiology , Arteries/physiology , Cardiac Output/drug effects , Cross-Over Studies , Enzyme Inhibitors/pharmacology , Exercise Test , Female , Femoral Artery/drug effects , Femoral Artery/physiology , Humans , Male , Placebos , Pulse Wave Analysis/methods , Vascular Resistance/drug effects , Vascular Resistance/physiology , Young Adult , omega-N-Methylarginine/pharmacology
18.
Oxid Med Cell Longev ; 2020: 8548619, 2020.
Article in English | MEDLINE | ID: mdl-32104540

ABSTRACT

Trichophyton rubrum (T. rubrum) is one of the most important agents of dermatophyte infection in humans. The aim of this experiment was to evaluate the effect of HaCaT cells on T. rubrum, investigate the responsible mechanism of action, and explore the role of reactive oxygen species (ROS) and nitric oxide (NO) in the inhibition of T. rubrum growth by HaCaT cells. The viability of fungi treated with HaCaT cells alone and with HaCaT cells combined with pretreatment with the NADPH oxidase inhibitor (DPI) or the nitric oxide synthase (NOS) inhibitor L-NMMA was determined by enumerating the colony-forming units. NOS, ROS, and NO levels were quantified using fluorescent probes. The levels of the NOS inhibitor asymmetric dimethylarginine (ADMA) were determined by enzyme-linked immunosorbent assay (ELISA). Micromorphology was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, fungal keratinase activity was assessed by measuring dye release from keratin azure. In vitro fungal viability, keratinase activity, and ADMA content decreased after HaCaT cell intervention, whereas the levels of ROS, NO, and NOS increased. The micromorphology was abnormal. Fungi pretreated with DPI and L-NMMA exhibited opposite effects. HaCaT cells inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism is that ROS and NO play an important role in the inhibition of T. rubrum growth by HaCaT cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Trichophyton/metabolism , Arginine/analogs & derivatives , Arginine/metabolism , Arginine/pharmacology , Catecholamines/pharmacology , Cell Line , Humans , Imidazolines/pharmacology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , NADPH Oxidases/antagonists & inhibitors , Nitric Oxide Synthase/antagonists & inhibitors , Peptide Hydrolases/metabolism , Trichophyton/drug effects , Trichophyton/growth & development , Trichophyton/ultrastructure , omega-N-Methylarginine/pharmacology
19.
Ann Biomed Eng ; 48(4): 1256-1270, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31916126

ABSTRACT

tDCS has been used to treat various brain disorders and its mechanism of action (MoA) was found to be neuronal polarization. Since the blood-brain barrier (BBB) tightly regulates the neuronal microenvironment, we hypothesized that another MoA of tDCS is direct vascular activation by modulating the BBB structures to increase its permeability (P). To test this hypothesis, we used high resolution multiphoton microscopy to determine P of the cerebral microvessels in rat brain. We found that 20 min 0.1-1 mA tDCS transiently increases P to a small solute, sodium fluorescein (MW 376) and to a large solute, Dextran-70k, with a much higher increase in P to the large solute. By pretreating the vessel with a nitric oxide synthase inhibitor, we revealed that the tDCS-induced increase in P is NO dependent. A transport model for the BBB was further employed to predict the structural changes by the tDCS. Comparing model predictions with the measured data suggests that tDCS increases P by temporarily disrupting the structural components forming the paracellular pathway of the BBB. That the transient and reversible increase in the BBB permeability also suggests new applications of tDCS such as a non-invasive approach for brain drug delivery through the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Transcranial Direct Current Stimulation , Animals , Blood-Brain Barrier/drug effects , Dextrans/pharmacology , Drug Delivery Systems , Female , Fluorescein/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Permeability , Rats, Sprague-Dawley , omega-N-Methylarginine/pharmacology
20.
Redox Biol ; 26: 101238, 2019 09.
Article in English | MEDLINE | ID: mdl-31200239

ABSTRACT

L-NG-Nitro arginine methyl ester (L-NAME) has been widely applied for several decades in both basic and clinical research as an antagonist of nitric oxide synthase (NOS). Herein, we show that L-NAME slowly releases NO from its guanidino nitro group. Daily pretreatment of rats with L-NAME potentiated mesenteric vasodilation induced by nitrodilators such as nitroglycerin, but not by NO. Release of NO also occurred with the NOS-inactive enantiomer D-NAME, but not with L-arginine or another NOS inhibitor L-NMMA, consistent with the presence or absence of a nitro group in their structure and their nitrodilator-potentiating effects. Metabolic conversion of the nitro group to NO-related breakdown products was confirmed using isotopically-labeled L-NAME. Consistent with Fenton chemistry, transition metals and reactive oxygen species accelerated the release of NO from L-NAME. Both NO production from L-NAME and its nitrodilator-potentiating effects were augmented under inflammation. NO release by L-NAME can confound its intended NOS-inhibiting effects, possibly by contributing to a putative intracellular NO store in the vasculature.


Subject(s)
Enzyme Inhibitors/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitroglycerin/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Arginine/pharmacology , Female , Mesenteric Arteries/drug effects , Mice , Myography , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sheep , Stereoisomerism , Vasodilation/physiology , omega-N-Methylarginine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...