Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.019
Filter
1.
Protein Sci ; 33(9): e5137, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39150085

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor that functions in maintaining redox homeostasis in cells. It mediates the transcription of cytoprotective genes in response to environmental and endogenous stresses to prevent oxidative damage. Thus, Nrf2 plays a significant role in chemoprevention. However, aberrant activation of Nrf2 has been shown to protect cancer cells from apoptosis and contribute to their chemoresistance. The interaction between Nrf2 and CBP is critical for the gene transcription activation. CBP and its homologue p300 interact with two transactivation domains in Nrf2, Neh4, and Neh5 domains through their TAZ1 and TAZ2 domains. To date, the molecular basis of this crucial interaction is not known, hindering a more detailed understanding of the regulation of Nrf2. To close this knowledge gap, we have used a set of biophysical experiments to dissect the Nrf2-CBP/p300 interactions. Structural properties of Neh4 and Neh5 and their binding with the TAZ1 and TAZ2 domains of CBP/p300 were characterized. Our results show that the Neh4 and Neh5 domains of Nrf2 are intrinsically disordered, and they both can bind the TAZ1 and TAZ2 domains of CBP/p300 with micromolar affinities. The findings provide molecular insight into the regulation of Nrf2 by CBP/p300 through multi-domain interactions.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Protein Domains , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/chemistry , NF-E2-Related Factor 2/genetics , Humans , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/genetics , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/chemistry , p300-CBP Transcription Factors/genetics , Protein Binding
2.
Redox Biol ; 75: 103299, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39127016

ABSTRACT

Lung cancer is a leading cause of cancer death worldwide, with high incidence and poor survival rates. Cold atmospheric plasma (CAP) technology has emerged as a promising therapeutic approach for cancer treatment, inducing oxidative stress in malignant tissues without causing thermal damage. However, the role of CAP in regulating lung cancer cell ferroptosis remains unclear. Here, we observed that CAP effectively suppressed the growth and migration abilities of lung cancer cells, with significantly increased ferroptotic cell death, lipid peroxidation, and decreased mitochondrial membrane potential. Mechanistically, CAP regulates SLC7A11-mediated cell ferroptosis by modulating HOXB9. SLC7A11, a potent ferroptosis suppressor, was markedly reduced by HOXB9 knockdown, while it was enhanced by overexpressing HOXB9. The luciferase and ChIP assays confirmed that HOXB9 can directly target SLC7A11 and regulate its gene transcription. Additionally, CAP enhanced the acetylation modification level of HOXB9 by promoting its interaction with acetyltransferase p300/CBP-associated factor (PCAF). Acetylated HOXB9 affects its protein ubiquitination modification level, which in turn affects its protein stability. Notably, the upregulation of SLC7A11 and HOXB9 mitigated the suppressive effects of CAP on ferroptosis status, cell proliferation, invasion, and migration in lung cancer cells. Furthermore, animal models have also confirmed that CAP can inhibit the progression of lung cancer in vivo. Overall, this study highlights the significance of the downregulation of the HOXB9/SLC7A11 axis by CAP treatment in inhibiting lung cancer, offering novel insights into the potential mechanisms and therapeutic strategies of CAP for lung cancer.


Subject(s)
Amino Acid Transport System y+ , Carcinoma, Non-Small-Cell Lung , Ferroptosis , Gene Expression Regulation, Neoplastic , Homeodomain Proteins , Lung Neoplasms , p300-CBP Transcription Factors , Humans , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Acetylation , p300-CBP Transcription Factors/metabolism , Animals , Mice , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Movement
3.
J Med Chem ; 67(16): 14633-14648, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169826

ABSTRACT

The well-known tumor suppressor p53 is mutated in approximately half of all cancers. The Y220C mutation is one of the major p53 hotspot mutations. Several small-molecule stabilizers of p53Y220C have been developed. We recently developed a new technology for inducing targeted protein acetylation, termed acetylation targeting chimera (AceTAC), and the first p53Y220C AceTAC that effectively acetylated p53Y220C at lysine 382. Here, we report structure-activity relationship (SAR) studies of p53Y220C AceTACs, which led to the discovery of a novel p53Y220C AceTAC, compound 11 (MS182). 11 effectively acetylated p53Y220C at lysine 382 in a time- and concentration-dependent manner via inducing the ternary complex formation between p300/CBP acetyltransferase and p53Y220C. 11 was more effective than the parent p53Y220C stabilizer in suppressing the proliferation and clonogenicity in cancer cells harboring the p53Y200C mutation and was bioavailable in mice. Overall, 11 is a potentially valuable chemical tool to investigate the role of p53Y220C acetylation in cancer.


Subject(s)
Drug Design , Tumor Suppressor Protein p53 , Acetylation , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/antagonists & inhibitors , Humans , Animals , Structure-Activity Relationship , Mice , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , Mutation
4.
FASEB J ; 38(13): e23780, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38948938

ABSTRACT

Aerobic training (AT), an effective form of cardiac rehabilitation, has been shown to be beneficial for cardiac repair and remodeling after myocardial infarction (MI). The p300/CBP-associated factor (PCAF) is one of the most important lysine acetyltransferases and is involved in various biological processes. However, the role of PCAF in AT and AT-mediated cardiac remodeling post-MI has not been determined. Here, we found that the PCAF protein level was significantly increased after MI, while AT blocked the increase in PCAF. AT markedly improved cardiac remodeling in mice after MI by reducing endoplasmic reticulum stress (ERS). In vivo, similar to AT, pharmacological inhibition of PCAF by Embelin improved cardiac recovery and attenuated ERS in MI mice. Furthermore, we observed that both IGF-1, a simulated exercise environment, and Embelin protected from H2O2-induced cardiomyocyte injury, while PCAF overexpression by viruses or the sirtuin inhibitor nicotinamide eliminated the protective effect of IGF-1 in H9C2 cells. Thus, our data indicate that maintaining low PCAF levels plays an essential role in AT-mediated cardiac protection, and PCAF inhibition represents a promising therapeutic target for attenuating cardiac remodeling after MI.


Subject(s)
Myocardial Infarction , Physical Conditioning, Animal , Ventricular Remodeling , p300-CBP Transcription Factors , Animals , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Ventricular Remodeling/drug effects , Ventricular Remodeling/physiology , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Endoplasmic Reticulum Stress/drug effects
5.
Hypertension ; 81(9): 1869-1882, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989586

ABSTRACT

BACKGROUND: Renin-expressing cells are myoendocrine cells crucial for the maintenance of homeostasis. Renin is regulated by cAMP, p300 (histone acetyltransferase p300)/CBP (CREB-binding protein), and Brd4 (bromodomain-containing protein 4) proteins and associated pathways. However, the specific regulatory changes that occur following inhibition of these pathways are not clear. METHODS: We treated As4.1 cells (tumoral cells derived from mouse juxtaglomerular cells that constitutively express renin) with 3 inhibitors that target different factors required for renin transcription: H-89-dihydrochloride, PKA (protein kinase A) inhibitor; JQ1, Brd4 bromodomain inhibitor; and A-485, p300/CBP inhibitor. We performed assay for transposase-accessible chromatin with sequencing (ATAC-seq), single-cell RNA sequencing, cleavage under targets and tagmentation (CUT&Tag), and chromatin immunoprecipitation sequencing for H3K27ac (acetylation of lysine 27 of the histone H3 protein) and p300 binding on biological replicates of treated and control As4.1 cells. RESULTS: In response to each inhibitor, Ren1 expression was significantly reduced and reversible upon washout. Chromatin accessibility at the Ren1 locus did not markedly change but was globally reduced at distal elements. Inhibition of PKA led to significant reductions in H3K27ac and p300 binding specifically within the Ren1 super-enhancer region. Further, we identified enriched TF (transcription factor) motifs shared across each inhibitory treatment. Finally, we identified a set of 9 genes with putative roles across each of the 3 renin regulatory pathways and observed that each displayed differentially accessible chromatin, gene expression, H3K27ac, and p300 binding at their respective loci. CONCLUSIONS: Inhibition of renin expression in cells that constitutively synthesize and release renin is regulated by an epigenetic switch from an active to poised state associated with decreased cell-cell communication and an epithelial-mesenchymal transition. This work highlights and helps define the factors necessary for renin cells to alternate between myoendocrine and contractile phenotypes.


Subject(s)
Epigenesis, Genetic , Renin , Transcription Factors , Animals , Mice , Renin/metabolism , Renin/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Juxtaglomerular Apparatus/metabolism , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , Bromodomain Containing Proteins , Nuclear Proteins
6.
J Chem Inf Model ; 64(15): 6041-6052, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39074869

ABSTRACT

Structural disorder in proteins is central to cellular signaling, where conformational plasticity equips molecules to promiscuously interact with different partners. By engaging with multiple binding partners via the rearrangement of its three helices, the nuclear coactivator binding domain (NCBD) of the CBP/p300 transcription factor is a paradigmatic example of promiscuity. Recently, molecular simulations and experiments revealed that, through the establishment of long-range electrostatic interactions, intended as salt-bridges formed between the post-translationally inserted phosphate and positively charged residues in helix H3 of NCBD, phosphorylation triggers NCBD compaction, lowering its affinity for binding partners. By means of extensive molecular simulations, we here investigated the effect of short-range electrostatics on the conformational ensemble of NCBD, by monitoring the interactions between a phosphorylated serine and conserved positively charged residues within the NCBD phospho-motif. We found that empowering proximal electrostatic interactions, as opposed to long-range electrostatics, can reshape the NCBD ensemble rescuing the binding competency of phosphorylated NCBD. Given the conservation of positive charges in phospho-motifs, proximal electrostatic interactions might dampen the effects of phosphorylation and act as a relay to regulate phosphorylated intrinsically disordered proteins, ultimately tuning the binding affinity for different cellular partners.


Subject(s)
Protein Binding , Static Electricity , Phosphorylation , Molecular Dynamics Simulation , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Amino Acid Motifs , p300-CBP Transcription Factors/chemistry , p300-CBP Transcription Factors/metabolism , Protein Conformation , Humans
7.
Cell Commun Signal ; 22(1): 306, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831454

ABSTRACT

BACKGROUND: Dysregulation in histone acetylation, a significant epigenetic alteration closely associated with major pathologies including cancer, promotes tumorigenesis, inactivating tumor-suppressor genes and activating oncogenic pathways. AMP-activated protein kinase (AMPK) is a cellular energy sensor that regulates a multitude of biological processes. Although a number of studies have identified the mechanisms by which AMPK regulates cancer growth, the underlying epigenetic mechanisms remain unknown. METHODS: The impact of metformin, an AMPK activator, on cervical cancer was evaluated through assessments of cell viability, tumor xenograft model, pan-acetylation analysis, and the role of the AMPK-PCAF-H3K9ac signaling pathway. Using label-free quantitative acetylproteomics and chromatin immunoprecipitation-sequencing (ChIP) technology, the activation of AMPK-induced H3K9 acetylation was further investigated. RESULTS: In this study, we found that metformin, acting as an AMPK agonist, activates AMPK, thereby inhibiting the proliferation of cervical cancer both in vitro and in vivo. Mechanistically, AMPK activation induces H3K9 acetylation at epigenetic level, leading to chromatin remodeling in cervical cancer. This also enhances the binding of H3K9ac to the promoter regions of multiple tumor suppressor genes, thereby promoting their transcriptional activation. Furthermore, the absence of PCAF renders AMPK activation incapable of inducing H3K9 acetylation. CONCLUSIONS: In conclusion, our findings demonstrate that AMPK mediates the inhibition of cervical cancer growth through PCAF-dependent H3K9 acetylation. This discovery not only facilitates the clinical application of metformin but also underscores the essential role of PCAF in AMPK activation-induced H3K9 hyperacetylation.


Subject(s)
AMP-Activated Protein Kinases , Cell Proliferation , Histones , Metformin , Uterine Cervical Neoplasms , p300-CBP Transcription Factors , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Humans , Acetylation/drug effects , Female , Histones/metabolism , AMP-Activated Protein Kinases/metabolism , Cell Proliferation/drug effects , Animals , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , Metformin/pharmacology , Mice , Mice, Nude , Cell Line, Tumor , Enzyme Activation/drug effects
8.
J Med Chem ; 67(11): 9194-9213, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38829718

ABSTRACT

The epigenetic target CREB (cyclic-AMP responsive element binding protein) binding protein (CBP) and its homologue p300 were promising therapeutic targets for the treatment of acute myeloid leukemia (AML). Herein, we report the design, synthesis, and evaluation of a class of CBP/p300 PROTAC degraders based on our previously reported highly potent and selective CBP/p300 inhibitor 5. Among the compounds synthesized, 11c (XYD129) demonstrated high potency and formed a ternary complex between CBP/p300 and CRBN (AlphaScreen). The compound effectively degraded CBP/p300 proteins and exhibited greater inhibition of growth in acute leukemia cell lines compared to its parent compound 5. Furthermore, 11c demonstrated significant inhibition of tumor growth in a MOLM-16 xenograft model (TGI = 60%) at tolerated dose schedules. Our findings suggest that 11c is a promising lead compound for the treatment of AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/metabolism , Structure-Activity Relationship , Drug Discovery , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/metabolism , Xenograft Model Antitumor Assays , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , Proteolysis/drug effects , Cell Proliferation/drug effects
9.
Biol Direct ; 19(1): 48, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902802

ABSTRACT

BACKGROUND: Prior research has highlighted the involvement of a transcriptional complex comprising C-terminal binding protein 2 (CtBP2), histone acetyltransferase p300, and nuclear factor kappa B (NF-κB) in the transactivation of proinflammatory cytokine genes, contributing to inflammation in mice with acute respiratory distress syndrome (ARDS). Nonetheless, it remains uncertain whether the therapeutic targeting of the CtBP2-p300-NF-κB complex holds potential for ARDS suppression. METHODS: An ARDS mouse model was established using lipopolysaccharide (LPS) exposure. RNA-Sequencing (RNA-Seq) was performed on ARDS mice and LPS-treated cells with CtBP2, p300, and p65 knockdown. Small molecules inhibiting the CtBP2-p300 interaction were identified through AlphaScreen. Gene and protein expression levels were quantified using RT-qPCR and immunoblots. Tissue damage was assessed via histological staining. KEY FINDINGS: We elucidated the specific role of the CtBP2-p300-NF-κB complex in proinflammatory gene regulation. RNA-seq analysis in LPS-challenged ARDS mice and LPS-treated CtBP2-knockdown (CtBP2KD), p300KD, and p65KD cells revealed its significant impact on proinflammatory genes with minimal effects on other NF-κB targets. Commercial inhibitors for CtBP2, p300, or NF-κB exhibited moderate cytotoxicity in vitro and in vivo, affecting both proinflammatory genes and other targets. We identified a potent inhibitor, PNSC928, for the CtBP2-p300 interaction using AlphaScreen. PNSC928 treatment hindered the assembly of the CtBP2-p300-NF-κB complex, substantially downregulating proinflammatory cytokine gene expression without observable cytotoxicity in normal cells. In vivo administration of PNSC928 significantly reduced CtBP2-driven proinflammatory gene expression in ARDS mice, alleviating inflammation and lung injury, ultimately improving ARDS prognosis. CONCLUSION: Our results position PNSC928 as a promising therapeutic candidate to specifically target the CtBP2-p300 interaction and mitigate inflammation in ARDS management.


Subject(s)
Alcohol Oxidoreductases , E1A-Associated p300 Protein , Inflammation , Respiratory Distress Syndrome , Animals , Mice , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Male , Lipopolysaccharides , Mice, Inbred C57BL , Disease Models, Animal , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , NF-kappa B/metabolism
10.
Nat Commun ; 15(1): 4962, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862536

ABSTRACT

In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.


Subject(s)
Histones , Transcription, Genetic , Ubiquitination , Acetylation , Histones/metabolism , Humans , p300-CBP Transcription Factors/metabolism , Protein Processing, Post-Translational , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Lysine/metabolism
11.
Nat Commun ; 15(1): 4770, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839769

ABSTRACT

SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , SMARCB1 Protein , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Humans , Animals , Cell Line, Tumor , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Chromatin Assembly and Disassembly/genetics , Mice, Nude , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays , Promoter Regions, Genetic/genetics , Cell Proliferation/genetics , Cell Proliferation/drug effects , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology
12.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718570

ABSTRACT

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Subject(s)
Apigenin , Epithelial-Mesenchymal Transition , Glucose , Histones , Retinal Pigment Epithelium , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Apigenin/pharmacology , Acetylation/drug effects , Humans , Glucose/metabolism , Glucose/toxicity , Histones/metabolism , Cell Line , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Mice, Inbred C57BL , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/drug therapy , E1A-Associated p300 Protein/metabolism , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics
13.
ACS Chem Neurosci ; 15(15): 2741-2755, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38795032

ABSTRACT

TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.


Subject(s)
Neuronal Plasticity , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Administration, Oral , Mice , Neuronal Plasticity/drug effects , p300-CBP Transcription Factors/metabolism , Mice, Inbred C57BL , Long-Term Potentiation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Male
14.
Bioorg Chem ; 148: 107427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728911

ABSTRACT

Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Ubiquitin-Protein Ligases , p300-CBP Transcription Factors , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Apoptosis/drug effects , Cell Line, Tumor
15.
Bioorg Med Chem Lett ; 104: 129742, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604299

ABSTRACT

P300 and CBP are two closely related histone acetyltransferases that are important transcriptional coactivators of many cellular processes. Inhibition of the transcriptional regulator p300/CBP is a promising therapeutic approach in oncology. However, there are no reported single selective p300 or CBP inhibitors to date. In this study, we designed and optimized a series of lysine acetyltransferase p300 selective inhibitors bearing a nucleoside scaffold. Most compounds showed excellent inhibitory activity against p300 with IC50 ranging from 0.18 to 9.90 µM, except for J16, J29, J40, and J48. None of the compounds showed inhibitory activity against CBP (inhibition rate < 50 % at 10 µM). Then the cytotoxicity of the compounds against a series of cancer cells were evaluated. Compounds J31 and J32 showed excellent proliferation inhibitory activity on cancer cells T47D and H520 with desirable selectivity profile of p300 over CBP. These compounds could be promising lead compounds for the development of novel epigenetic inhibitors as antitumor agents.


Subject(s)
Antineoplastic Agents , Lysine Acetyltransferases , Neoplasms , p300-CBP Transcription Factors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Histone Acetyltransferases/therapeutic use , Lysine Acetyltransferases/antagonists & inhibitors , Neoplasms/drug therapy , Nucleosides , p300-CBP Transcription Factors/antagonists & inhibitors , Humans , Drug Design
16.
Nat Commun ; 15(1): 3580, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678032

ABSTRACT

The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.


Subject(s)
E2F1 Transcription Factor , E2F4 Transcription Factor , Neoplastic Stem Cells , Pancreatic Neoplasms , Paracrine Communication , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , E2F4 Transcription Factor/metabolism , E2F4 Transcription Factor/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Female , Cell Proliferation , Mice , Signal Transduction , Drug Resistance, Neoplasm/genetics
17.
J Med Chem ; 67(9): 6952-6986, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38649304

ABSTRACT

The transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 have emerged as attractive therapeutic targets for human cancers such as acute myeloid leukemia (AML). Herein, we report the design, synthesis, and biological evaluation of a series of cereblon (CRBN)-recruiting CBP/p300 proteolysis targeting chimeras (PROTACs) based on the inhibitor CCS1477. The representative compounds 14g (XYD190) and 14h (XYD198) potently inhibited the growth of AML cells with low nanomolar IC50 values and effectively degraded CBP and p300 proteins in a concentration- and time-dependent manner. Mechanistic studies confirmed that 14g and 14h can selectively bind to CBP/p300 bromodomains and induce CBP and p300 degradation in bromodomain family proteins in a CRBN- and proteasome-dependent manner. 14g and 14h displayed remarkable antitumor efficacy in the MV4;11 xenograft model (TGI = 88% and 93%, respectively). Our findings demonstrated that 14g and 14h are useful lead compounds and deserve further optimization and activity evaluation for the treatment of human cancers.


Subject(s)
Antineoplastic Agents , Proteolysis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Animals , Mice , Proteolysis/drug effects , Cell Line, Tumor , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/antagonists & inhibitors , CREB-Binding Protein/metabolism , CREB-Binding Protein/antagonists & inhibitors , Drug Discovery , Xenograft Model Antitumor Assays , Structure-Activity Relationship , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Cell Proliferation/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice, Nude
18.
J Exp Clin Cancer Res ; 43(1): 117, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641672

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS: The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS: We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS: This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Humans , Mice , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/pathology , Gene Expression Regulation, Neoplastic , Genes, Neurofibromatosis 2 , Histones/metabolism , Lysine/metabolism , Mice, SCID , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
19.
Br J Cancer ; 130(10): 1621-1634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575732

ABSTRACT

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Radiation Tolerance , p300-CBP Transcription Factors , Animals , Female , Humans , Mice , DNA-Activated Protein Kinase/metabolism , HeLa Cells , Mice, Inbred BALB C , Mice, Nude , Neoplasms/radiotherapy , Neoplasms/metabolism , Neoplasms/genetics , p300-CBP Transcription Factors/metabolism , Protein Processing, Post-Translational , Xenograft Model Antitumor Assays
20.
Pharmacol Ther ; 257: 108636, 2024 May.
Article in English | MEDLINE | ID: mdl-38521246

ABSTRACT

Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.


Subject(s)
Histone Acetyltransferases , Neoplasms , Mice , Animals , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/therapeutic use , Protein Domains , Neoplasms/drug therapy , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL