Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.907
Filter
1.
Cell Rep ; 43(9): 114733, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39269903

ABSTRACT

Mutations in SYNGAP1 are a common genetic cause of intellectual disability (ID) and a risk factor for autism. SYNGAP1 encodes a synaptic GTPase-activating protein (GAP) that has both signaling and scaffolding roles. Most pathogenic variants of SYNGAP1 are predicted to result in haploinsufficiency. However, some affected individuals carry missense mutations in its calcium/lipid binding (C2) and GAP domains, suggesting that many clinical features result from loss of functions carried out by these domains. To test this hypothesis, we targeted the exons encoding the C2 and GAP domains of SYNGAP. Rats heterozygous for this deletion exhibit reduced exploration and fear extinction, altered social investigation, and spontaneous seizures-key phenotypes shared with Syngap heterozygous null rats. Together, these findings indicate that the reduction of SYNGAP C2/GAP domain function is a main feature of SYNGAP haploinsufficiency. This rat model provides an important system for the study of ID, autism, and epilepsy.


Subject(s)
ras GTPase-Activating Proteins , Animals , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Rats , Protein Domains , Haploinsufficiency , Male , Intellectual Disability/genetics , Intellectual Disability/metabolism , Humans , Seizures/metabolism , Seizures/genetics , Heterozygote , Fear/physiology , Autistic Disorder/genetics , Autistic Disorder/metabolism , Disease Models, Animal
2.
Science ; 385(6715): eadd8947, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39298586

ABSTRACT

Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.


Subject(s)
GTP-Binding Protein alpha Subunit, Gi2 , Germ-Line Mutation , Receptors, Antigen, T-Cell , T-Lymphocytes , ras GTPase-Activating Proteins , Humans , Cell Movement/genetics , Cell Proliferation , GTP-Binding Protein alpha Subunit, Gi2/genetics , Immunity/genetics , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , ras GTPase-Activating Proteins/genetics , ras Proteins/metabolism , ras Proteins/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Pedigree
3.
Brief Bioinform ; 25(6)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311700

ABSTRACT

De novo mutations in the synaptic GTPase activating protein (SynGAP) are associated with neurological disorders like intellectual disability, epilepsy, and autism. SynGAP is also implicated in Alzheimer's disease and cancer. Although pathogenic variants are highly penetrant in neurodevelopmental conditions, a substantial number of them are caused by missense mutations that are difficult to diagnose. Hence, in silico mutagenesis was performed for probing the missense effects within the N-terminal region of SynGAP structure. Through extensive molecular dynamics simulations, encompassing three 150-ns replicates for 211 variants, the impact of missense mutations on the protein fold was assessed. The effect of the mutations on the folding stability was also quantitatively assessed using free energy calculations. The mutations were categorized as potentially pathogenic or benign based on their structural impacts. Finally, the study introduces wild-type-SynGAP in complex with RasGTPase at the inner membrane, while considering the potential effects of mutations on these key interactions. This study provides structural perspective to the clinical assessment of SynGAP missense variants and lays the foundation for future structure-based drug discovery.


Subject(s)
Molecular Dynamics Simulation , Mutation, Missense , ras GTPase-Activating Proteins , Humans , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/chemistry , ras GTPase-Activating Proteins/metabolism , Protein Folding , Structure-Activity Relationship
4.
Neuron ; 112(18): 3058-3068.e8, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39111306

ABSTRACT

Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.


Subject(s)
Cerebral Cortex , Neurons , ras GTPase-Activating Proteins , Animals , Humans , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/deficiency , ras GTPase-Activating Proteins/metabolism , Neurons/metabolism , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Haploinsufficiency , Neuronal Plasticity/physiology , Synapses/metabolism , Synapses/physiology , Intellectual Disability/genetics , Male , Female
5.
J Neurodev Disord ; 16(1): 46, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148034

ABSTRACT

BACKGROUND: SYNGAP1 variants are associated with varying degrees of intellectual disability (ID), developmental delay (DD), epilepsy, autism, and behavioural difficulties. These features may also be observed in other monogenic conditions. There is a need to systematically compare the characteristics of SYNGAP1 with other monogenic causes of ID and DD to identify features unique to the SYNAGP1 phenotype. We aimed to contrast the neurodevelopmental and behavioural phenotype of children with SYNGAP1-related ID (SYNGAP1-ID) to children with other monogenic conditions and a matched degree of ID. METHODS: Participants were identified from the IMAGINE-ID study, a UK-based, national cohort study of neuropsychiatric risk in children with ID of known genetic origin. Thirteen children with SYNGAP1 variants (age 4-16 years; 85% female) were matched (2:1) with 26 controls with other monogenic causes of ID for chronological and mental age, sex, socio-economic deprivation, adaptive behaviour, and physical health difficulties. Caregivers completed the Development and Wellbeing Assessment (DAWBA) and physical health questionnaires. RESULTS: Our results demonstrate that seizures affected children with SYNGAP1-ID (84.6%) more frequently than the ID-comparison group (7.6%; p = < 0.001). Fine-motor development was disproportionally impaired in SYNGAP1-ID, with 92.3% of children experiencing difficulties compared to 50% of ID-comparisons(p = 0.03). Gross motor and social development did not differ between the two groups. Children with SYNGAP1-ID were more likely to be non-verbal (61.5%) than ID-comparisons (23.1%; p = 0.01). Those children able to speak, spoke their first words at the same age as the ID-comparison group (mean = 3.25 years), yet achieved lower language competency (p = 0.04). Children with SYNGAP1-ID compared to the ID-comparison group were not more likely to meet criteria for autism (SYNGAP1-ID = 46.2%; ID-comparison = 30.7%; p = .35), attention-deficit hyperactivity disorder (15.4%;15.4%; p = 1), generalised anxiety (7.7%;15.4%; p = .49) or oppositional defiant disorder (7.7%;0%; p = .15). CONCLUSION: For the first time, we demonstrate that SYNGAP1-ID is associated with fine motor and language difficulties beyond those experienced by children with other genetic causes of DD and ID. Targeted occupational and speech and language therapies should be incorporated early into SYNGAP1-ID management.


Subject(s)
Intellectual Disability , ras GTPase-Activating Proteins , Humans , Female , ras GTPase-Activating Proteins/genetics , Male , Child , Adolescent , Child, Preschool , Intellectual Disability/genetics , Intellectual Disability/etiology , Developmental Disabilities/genetics , Developmental Disabilities/etiology , United Kingdom , Neurodevelopmental Disorders/genetics , Cohort Studies , Phenotype , Epilepsy/genetics , Seizures/genetics
6.
Kaohsiung J Med Sci ; 40(9): 830-836, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39073693

ABSTRACT

Human papillomavirus (HPV)-related cervical and nasopharyngeal cancers differ in molecular mechanisms underlying the oncogenic processes. The disparity may be attributed to differential expression of oncoproteins. The current study investigated the host oncogenes expression pattern in HPV-associated cervical and nasopharyngeal cancer. Formalin-fixed paraffin-embedded tissues originating from the nasopharyngeal and cervical regions were screened using Hematoxylin and Eosin staining. Genomic DNA and total RNA were extracted from confirmed cancer biopsies and non-cancer tissues (NC). HPV was detected by PCR using MY09/GP5+/6+ primers. Protein expression levels of AKT, IQGAP1, and MMP16 in HPV-infected cancers and controls were determined by immunohistochemistry. RT-qPCR was used to profile mRNAs of the oncogenes. AKT and IQGAP1 proteins were highly expressed in the epithelial cancers compared with the non-cancer tissues (p < 0.05). IQGAP1 and MMP16 mRNAs level was significantly higher in the cancers than in the NC (p < 0.05), but not AKT mRNA levels. MMP16 protein was ubiquitously expressed in all tissues. AKT mRNA level was significantly elevated in CC compared with NPC (p < 0.001). However, the difference in AKT, IQGAP1 and MMP16 proteins level between CC and NPC was not significant (p > 0.05). The oncoproteins expression level between the HPV-positive and HPV-negative cancer biopsies showed no significant difference (p < 0.05). Current study reports AKT but not IQGAP1 and MMP16 mRNAs differentially expression in cervical and nasopharyngeal cancers, independent of HPV infection status.


Subject(s)
Nasopharyngeal Neoplasms , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , Papillomavirus Infections/metabolism , Papillomavirus Infections/pathology , Oncogenes , Gene Expression Regulation, Neoplastic , Papillomaviridae/genetics , Papillomaviridae/pathogenicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adult , Male , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism , Aged , Human Papillomavirus Viruses
7.
J Gene Med ; 26(7): e3717, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967915

ABSTRACT

BACKGROUND: Synaptic Ras GTPase activating protein 1 (SYNGAP1)-related non-specific intellectual disability is a neurodevelopmental disorder caused by an insufficient level of SynGAP1 resulting in a dysfunction of neuronal synapses and presenting with a wide array of clinical phenotypes. Hematopoietic stem cell gene therapy has the potential to deliver therapeutic levels of functional SynGAP1 to affected neurons upon transduction of hematopoietic stem and progenitor cells with a lentiviral vector. METHODS: As a novel approach toward the treatment of SYNGAP1, we have generated a lentiviral vector expressing a modified form of SynGAP1 for transduction of human CD34+ hematopoietic stem and progenitor cells. The gene-modified cells were then transplanted into adult immunodeficient SYNGAP1+/- heterozygous mice and evaluated for improvement of SYNGAP1-related clinical phenotypes. Expression of SynGAP1 was also evaluated in the brain tissue of transplanted mice. RESULTS: In our proof-of-concept study, we have demonstrated significant improvement of SYNGAP1-related phenotypes including an improvement in motor abilities observed in mice transplanted with the vector transduced cells because they displayed decreased hyperactivity in an open field assay and an increased latency to fall in a rotarod assay. An increased level of SynGAP1 was also detected in the brains of these mice. CONCLUSIONS: These early-stage results highlight the potential of this stem cell gene therapy approach as a treatment strategy for SYNGAP1.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Intellectual Disability , Animals , Humans , Mice , Brain/metabolism , Disease Models, Animal , Genetic Therapy/methods , Genetic Vectors/genetics , Hematopoietic Stem Cells/metabolism , Intellectual Disability/therapy , Intellectual Disability/genetics , Lentivirus/genetics , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism , Transduction, Genetic
8.
Analyst ; 149(17): 4378-4387, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38995156

ABSTRACT

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and a major cause of cancer-related mortality worldwide. Small extracellular vesicles (sEVs) are heterogeneous populations of membrane-structured vesicles that can be found in many biological fluids and are currently considered as a potential source of disease-associated biomarkers for diagnosis. The purpose of this study was to define the proteomic and phosphoproteomic landscape of urinary sEVs in patients with HCC. Mass spectrometry-based methods were used to detect the global proteome and phosphoproteome profiles of sEVs isolated by differential ultracentrifugation. Label-free quantitation analysis showed that 348 differentially expressed proteins (DEPs) and 548 differentially expressed phosphoproteins (DEPPs) were identified in the HCC group. Among them, multiple phosphoproteins related to HCC, including HSP90AA1, IQGAP1, MTOR, and PRKCA, were shown to be upregulated in the HCC group. Pathway enrichment analysis indicated that the upregulated DEPPs participate in the regulation of autophagy, proteoglycans in cancer, and the MAPK/mTOR/Rap1 signaling pathway. Furthermore, kinase-substrate enrichment analysis revealed activation of MTOR, AKT1, MAP2Ks, and MAPKs family kinases in HCC-derived sEVs, indicating that dysregulation of the MAPK and mTOR signaling pathways may be the primary sEV-mediated molecular mechanisms involved in the development and progression of HCC. This study demonstrated that urinary sEVs are enriched in proteomic and phosphoproteomic signatures that could be further explored for their potential use in early HCC diagnostic and therapeutic applications.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Phosphoproteins , Proteomics , Carcinoma, Hepatocellular/urine , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/urine , Liver Neoplasms/metabolism , Humans , Phosphoproteins/metabolism , Phosphoproteins/urine , Extracellular Vesicles/metabolism , Proteomics/methods , Male , TOR Serine-Threonine Kinases/metabolism , Biomarkers, Tumor/urine , Middle Aged , Female , ras GTPase-Activating Proteins/metabolism , Proteome , Protein Kinase C-alpha
9.
Mol Biol Rep ; 51(1): 824, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023688

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a global life-threatening problem and therapeutic interventions are still encountered. IQGAP genes are involved in HCC oncogenesis. The modulatory effect of statins on the expression of IQGAP genes is still unclear. This study aims to study the effect of free SV and chitosan (CS) decorated simvastatin (SV) loaded solid lipid nanoparticles (C-SV-SLNs) on HCC mortality. METHODS AND RESULTS: Plain, SV-SLN, and C-SV- SLN were prepared and characterized in terms of particle size (PS), zeta potential (ZP), and polydispersity index (PDI). The biosafety of different SLN was investigated using fresh erythrocytes, moreover, cytotoxicity was investigated using HepG2 cell lines. The effect of SLNs on IQGAPs gene expression as well as JNK, HDAC6, and HDAC8 activity was investigated using PCR and MOE-docking. The current results displayed that SV-SLNs have nanosized, negative ZP and are homogenous, CS decoration shifts the ZP of SLN into cationic ZP. Furthermore, all SLNs exhibited desirable biosafety in terms of no deleterious effect on erythrocyte integrity. SV solution and SV-SLN significantly increase the mortality of HepG2 compared to undertreated cells, however, the effect of SV-SLN is more pronounced compared to free SV. Remarkably, C-SV-SLN elicits high HepG2 cell mortality compared to free SV and SV-SLN. The treatment of HepG2 cells with SV solution, SV-SLN, or C-SV-SLN significantly upregulates the IQGAP2 gene with repression of IQGAP1 and IQGAP3 genes. MOE-docking studies revealed both SV and tenivastatin exhibit interactions with the active sites of JNK, HDAC6, and HDAC8. Moreover, tenivastatin exhibited greater interactions with magnesium and zinc compared to SV. CONCLUSIONS: This research provides novel insights into the therapeutic potential of SV, SV-SLN and C-SV-SLNs in HCC treatment, modulating critical signaling cascades involving IQGAPs, JNK, and HDAC. The development of C-SV-SLNs presents a promising strategy for effective HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Chitosan , Histone Deacetylases , Liver Neoplasms , Nanoparticles , ras GTPase-Activating Proteins , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Hep G2 Cells , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Chitosan/pharmacology , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism , Nanoparticles/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Particle Size , Liposomes , Repressor Proteins
10.
Nat Cell Biol ; 26(7): 1062-1076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951708

ABSTRACT

Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.


Subject(s)
Actomyosin , Cell Movement , Cell Polarity , Dictyostelium , ras Proteins , Dictyostelium/metabolism , Dictyostelium/genetics , HL-60 Cells , Actomyosin/metabolism , Humans , ras Proteins/metabolism , ras Proteins/genetics , Macrophages/metabolism , Myosin Type II/metabolism , Myosin Type II/genetics , Neutrophils/metabolism , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Animals , Chemotaxis , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Actins/metabolism , Computer Simulation , Mice , Signal Transduction
11.
Arch Biochem Biophys ; 758: 110064, 2024 08.
Article in English | MEDLINE | ID: mdl-38897534

ABSTRACT

Chemoresistance is one of the major hindrances to many cancer therapies, including esophageal squamous cell carcinoma (ESCC). Ferroptosis, a new programmed cell death, plays an essential role in chemoresistance. IQ-domain GTPase activating protein 1 (IQGAP1) is a scaffold protein and functions as an oncogene in various human malignancies. However, the underlying effect and molecular mechanisms of IQGAP1 on paclitaxel (PTX) resistance and ferroptosis in ESCC remain to be elucidated. In this study, we found that IQGAP1 was highly expressed in ESCC tissues and could as a potential biomarker for diagnosis and predicting the prognosis of ESCC. Functional studies revealed that IQGAP1 overexpression reduced the sensitivity of ESCC cells to PTX by enhancing ESCC cell viability and proliferation and inhibiting cell death, and protected ESCC cells from ferroptosis, whereas IQGAP1 knockdown exhibited contrary effects. Importantly, reductions of chemosensitivity and ferroptosis caused by IQGAP1 overexpression were reversed with ferroptosis inducer RSL3, while the increases of chemosensitivity and ferroptosis caused by IQGAP1 knockdown were reversed with ferroptosis inhibitor ferrostatin-1 (Fer-1) in ESCC cells, indicating that IQGAP1 played a key role in resistance to PTX through regulating ferroptosis. Mechanistically, we demonstrated that IQGAP1 overexpression upregulated the expression of Yes-associated protein (YAP), the central mediator of the Hippo pathway. YAP inhibitor Verteporfin (VP) could reverse the effects of IQGAP1 overexpression on ESCC chemoresistance and ferroptosis. Taken together, our findings suggest that IQGAP1 promotes chemoresistance by blocking ferroptosis through targeting YAP. IQGAP1 may be a novel therapeutic target for overcoming chemoresistance in ESCC.


Subject(s)
Drug Resistance, Neoplasm , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Paclitaxel , ras GTPase-Activating Proteins , Humans , Ferroptosis/drug effects , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Paclitaxel/pharmacology , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects
12.
Sci Rep ; 14(1): 12868, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834690

ABSTRACT

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Subject(s)
Cell Proliferation , Leukemia, Myeloid, Acute , ras GTPase-Activating Proteins , Humans , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Computer Simulation , Antineoplastic Agents/pharmacology , Protein Domains , Animals , Proteomics/methods
13.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38888895

ABSTRACT

Macropinocytosis mediates the non-selective bulk uptake of extracellular fluid, enabling cells to survey the environment and obtain nutrients. A conserved set of signaling proteins orchestrates the actin dynamics that lead to membrane ruffling and macropinosome formation across various eukaryotic organisms. At the center of this signaling network are Ras GTPases, whose activation potently stimulates macropinocytosis. However, how Ras signaling is initiated and spatiotemporally regulated during macropinocytosis is not well understood. By using the model system Dictyostelium and a proteomics-based approach to identify regulators of macropinocytosis, we uncovered Leep2, consisting of Leep2A and Leep2B, as a RasGAP complex. The Leep2 complex specifically localizes to emerging macropinocytic cups and nascent macropinosomes, where it modulates macropinosome formation by regulating the activities of three Ras family small GTPases. Deletion or overexpression of the complex, as well as disruption or sustained activation of the target Ras GTPases, impairs macropinocytic activity. Our data reveal the critical role of fine-tuning Ras activity in directing macropinosome formation.


Subject(s)
Dictyostelium , Pinocytosis , ras GTPase-Activating Proteins , Dictyostelium/cytology , Dictyostelium/metabolism , Protozoan Proteins/metabolism , ras GTPase-Activating Proteins/metabolism , ras Proteins/metabolism , Signal Transduction
14.
Int Immunopharmacol ; 138: 112549, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38944950

ABSTRACT

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), still ranks among the leading causes of annual human death by infectious disease. Mtb has developed several strategies to survive for years at a time within the host despite the presence of a robust immune response, including manipulating the progression of the inflammatory response and forming granulomatous lesions. Here we demonstrate that IQGAP1, a highly conserved scaffolding protein, compartmentalizes and coordinates multiple signaling pathways in macrophages infected with Mycobacterium marinum (Mm or M.marinum), the closest relative of Mtb. Upregulated IQGAP1 ultimately suppresses TNF-α production by repressing the MKK3 signal and reducing NF-κBp65 translocation, deactivating the p38MAPK pathway. Accordingly, IQGAP1 silencing and overexpression significantly alter p38MAPK activity by modulating the production of phosphorylated MKK3 during mycobacterial infection. Pharmacological inhibition of IQGAP1-associated microtubule assembly not only alleviates tissue damage caused by M.marinum infection but also significantly decreases the production of VEGF-a critical player for granuloma-associated angiogenesis during pathogenic mycobacterial infection. Similarly, IQGAP1 silencing in Mm-infected macrophages diminishes VEGF production, while IQGAP1 overexpression upregulates VEGF. Our data indicate that mycobacteria induce IQGAP1 to hijack NF-κBp65 activation, preventing the expression of proinflammatory cytokines as well as promoting VEGF production during infection and granuloma formation. Thus, therapies targeting host IQGAP1 may be a promising strategy for treating tuberculosis, particularly in drug-resistant diseases.


Subject(s)
Macrophages , NF-kappa B , Signal Transduction , Vascular Endothelial Growth Factor A , ras GTPase-Activating Proteins , Animals , Mice , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 3/genetics , Mice, Inbred C57BL , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/metabolism , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , RAW 264.7 Cells , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
15.
Cell Death Differ ; 31(7): 844-854, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38902547

ABSTRACT

The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/ß-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.


Subject(s)
Neoplasms , ras GTPase-Activating Proteins , Humans , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/genetics , Animals , Signal Transduction
16.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943117

ABSTRACT

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Subject(s)
Disease Progression , Pancreatic Neoplasms , Proteomics , SOXC Transcription Factors , ras GTPase-Activating Proteins , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Mitogen-Activated Protein Kinase 1/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Phosphoproteins/metabolism , Phosphorylation , Prognosis , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Signal Transduction , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics
17.
Cell Biochem Biophys ; 82(2): 1555-1566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762714

ABSTRACT

The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.


Subject(s)
4-Butyrolactone , Angiopoietin-2 , Homoserine , Human Umbilical Vein Endothelial Cells , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Homoserine/analogs & derivatives , Homoserine/pharmacology , Homoserine/metabolism , Cadherins/metabolism , Cadherins/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Signal Transduction/drug effects , Antigens, CD/metabolism , Antigens, CD/genetics , Angiopoietin-1/metabolism , Angiopoietin-1/genetics
18.
Cell Signal ; 121: 111233, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38763182

ABSTRACT

Breast cancer is a heterogeneous disease that remains the most common malignancy among women worldwide. During genomic analysis of breast tumours, mRNA levels of IQGAP3 were found to be upregulated in triple negative tumours. IQGAP3 was subsequently found to be expressed across a panel of triple negative breast cancer (TNBC) cell lines. Depleting expression levels of IQGAP3 delivered elongated cells, disrupted cell migration, and inhibited the ability of cells to form specialised invasive adhesion structures, termed invadopodia. The morphological changes induced by IQGAP3 depletion were found to be dependent on RhoA. Indeed, reduced expression of IQGAP3 disrupted RhoA activity and actomyosin contractility. Interestingly, IQGAP3 was also found to interact with p-21 activated kinase 6 (PAK6); a protein already associated with the regulation of cell morphology. Moreover, PAK6 depletion phenocopied IQGAP3 depletion in these cells. Whereas PAK6 overexpression rescued the IQGAP3 depletion phenotype. Our work points to an important PAK6-IQGAP3-RhoA pathway that drives the cellular contractility of breast cancer cells promoting both cell migration and adhesive invasion of these cells. As this phenotype is relevant to the process of metastasis and re-seeding of metastasis, the pharmacological targeting of PAK6 could lead to clinical benefit in TNBC patients.


Subject(s)
Cell Movement , Triple Negative Breast Neoplasms , p21-Activated Kinases , rhoA GTP-Binding Protein , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , rhoA GTP-Binding Protein/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Female , Podosomes/metabolism , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Cell Adhesion , Gene Expression Regulation, Neoplastic , GTPase-Activating Proteins
19.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38787349

ABSTRACT

Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.


Subject(s)
Actin Capping Proteins , Actin Cytoskeleton , Formins , ras GTPase-Activating Proteins , Animals , Humans , Actin Capping Proteins/metabolism , Actin Capping Proteins/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Movement , Formins/metabolism , HeLa Cells , Protein Binding , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Mice , NIH 3T3 Cells
20.
J Mol Biol ; 436(12): 168608, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759928

ABSTRACT

AIDA-1, encoded by ANKS1B, is an abundant postsynaptic scaffold protein essential for brain development. Mutations of ANKS1B are closely associated with various psychiatric disorders. However, very little is known regarding the molecular mechanisms underlying AIDA-1's involvements under physiological and pathophysiological conditions. Here, we discovered an interaction between AIDA-1 and the SynGAP family Ras-GTPase activating protein (GAP) via affinity purification using AIDA-1d as the bait. Biochemical studies showed that the PTB domain of AIDA-1 binds to an extended NPx[F/Y]-motif of the SynGAP family proteins with high affinities. The high-resolution crystal structure of AIDA-1 PTB domain in complex with the SynGAP NPxF-motif revealed the molecular mechanism governing the specific interaction between AIDA-1 and SynGAP. Our study not only explains why patients with ANKS1B or SYNGAP1 mutations share overlapping clinical phenotypes, but also allows identification of new AIDA-1 binding targets such as Ras and Rab interactors.


Subject(s)
Intracellular Signaling Peptides and Proteins , Protein Binding , ras GTPase-Activating Proteins , Humans , Crystallography, X-Ray , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/chemistry , Models, Molecular , Mutation , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/chemistry , ras GTPase-Activating Proteins/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL