Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.341
Filter
1.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38713636

ABSTRACT

Prolactin and its receptor (PRLr) in humans are significantly involved in breast cancer pathogenesis. The intermediate form of human PRLr (hPRLrI) is produced by alternative splicing and has a novel 13 amino acid tail ("I-tail") gain. hPRLrI induces significant proliferation and anchorage-independent growth of normal mammary epithelia in vitro when coexpressed with the long form hPRLr (hPRLrL). hPRLrL and hPRLrI coexpression is necessary to induce the transformation of mammary epithelia in vivo. The I-tail is associated with the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Treatment with the neural precursor cell expressed developmentally downregulated protein 8-activating enzyme inhibitor pevonedistat resulted in increased hPRLrL and the death of breast cancer cells. The goal of this study was to determine the function of the hPRLrI I-tail in hPRLrL/hPRLrI-mediated mammary transformation. hPRLrL/hPRLrI and hPRLrL/hPRLrIΔ13 (I-tail removal mutant) were delivered to MCF10AT cells. Cell proliferation was decreased when hPRLrI I-tail was removed. I-tail deletion decreased anchorage-independent growth and attenuated cell migration. The I-tail was involved in Ras/MAPK signaling but not PI3K/Akt signaling pathway as shown by western blot. I-tail removal resulted in decreased hPRLrI stability. RNA-sequencing data revealed that I-tail removal resulted in differential gene expression induced by prolactin. Ingenuity Pathway Analysis revealed that the activity of ERK was attenuated. Treatment of breast cancer cells with ERK1/2 inhibitor ulixertinib resulted in decreased colony-forming ability and less proliferation. These studies suggest that the hPRLrI I-tail contributed to breast oncogenesis and may be a promising target for the development of new breast cancer therapies.


Subject(s)
Breast Neoplasms , Receptors, Prolactin , Humans , Receptors, Prolactin/metabolism , Receptors, Prolactin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , MAP Kinase Signaling System/drug effects , Cell Proliferation/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , ras Proteins/metabolism , ras Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Signal Transduction/drug effects , Prolactin/metabolism , Prolactin/pharmacology
2.
Respir Res ; 25(1): 210, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755610

ABSTRACT

BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.


Subject(s)
Cigarette Smoking , MAP Kinase Signaling System , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Rats , Male , Humans , Cigarette Smoking/adverse effects , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Cells, Cultured , ras Proteins/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , raf Kinases/metabolism , raf Kinases/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Extracellular Signal-Regulated MAP Kinases/metabolism
3.
Methods Mol Biol ; 2797: 35-46, 2024.
Article in English | MEDLINE | ID: mdl-38570451

ABSTRACT

Biochemical and biophysical assays using recombinant RAS require the protein to be in either the active or inactive state. Here we describe methods to exchange the nucleotide present in the purified RAS protein with either GDPßS, GppNHp, or GTP depending on the assay requirement. In addition, we also describe the HPLC method used to validate the exchange process and provide information on the efficiency of the nucleotide exchange.


Subject(s)
ras Proteins , Guanosine Triphosphate/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Guanosine Diphosphate
4.
Methods Mol Biol ; 2797: 47-65, 2024.
Article in English | MEDLINE | ID: mdl-38570452

ABSTRACT

RAS proteins play a vital role in regulating downstream signaling and essential cellular processes, positioning them as key players in normal cellular physiology and disease development. Among the various isoforms of RAS, KRAS stands out as one of the most frequently mutated genes in human cancer. The prevalence of RAS mutations in cancer often involves single amino acid substitutions at codons 12, 13, or 61. These mutations disrupt the RAS protein's inherent ability to transition between its active and inactive states, resulting in a constant activation signal and driving uncontrolled cell growth. Crystallization and structural analysis of KRAS with inhibitors and RAS-binding proteins play a pivotal role in unraveling the structural and mechanistic details of KRAS function, aiding in drug discovery efforts, and advancing our understanding of KRAS-driven diseases. Here, we present our experimental methodology for crystallizing KRAS in the presence of covalent or non-covalent small molecules and proteins acting as effectors or regulators of RAS. We detail the techniques for successful crystallization and the subsequent optimization of crystallization conditions. The resulting crystals and their structures will provide valuable insights into the key interactions between KRAS and its partner proteins or potential inhibitors, offering a foundation for developing targeted therapies that are more potent and selective against KRAS-driven cancers.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Carrier Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Signal Transduction , Neoplasms/genetics , Mutation
5.
Methods Mol Biol ; 2797: 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38570461

ABSTRACT

Knowledge of how effectors interact with RAS GTPases is key to understanding how these switch-like proteins function in cells. Effectors bind specifically to GTP-loaded RAS using RAS association (RA) or RAS binding domains (RBDs) that show wide-ranging affinities and thermodynamic characteristics. Both normal development and RAS-induced tumorigenesis depend on multiple distinct effector proteins that are frequently co-expressed and co-localized, suggesting an antagonistic nature to signaling whereby multiple proteins compete for a limited pool of activated GTPase. NMR spectroscopy offers a powerful approach to multiplex effectors and/or regulatory enzymes and quantifies their interaction with RAS, expanding our biophysical and systems-level understanding of RAS signaling in a more integrated and physiologically relevant setting. Here we describe a method to directly quantitate GTPase binding to competing effectors, using wild-type KRAS complex with ARAF and PLCε1 as a model. Unlabeled RBD/RA domains are added simultaneously to isotopically labeled RAS, and peak intensities at chemical shifts characteristic of individually bound domains provide quantitation. Similar competition-based assays can be run with small molecule interactors, GEF/GAP domains, or regulatory enzymes that drive posttranslational modifications. Such efforts bring in vitro interaction experiments in line with more complex cellular environments.


Subject(s)
Signal Transduction , ras Proteins , ras Proteins/metabolism , Proteins/metabolism , Magnetic Resonance Spectroscopy , Protein Binding
6.
PLoS One ; 19(4): e0302075, 2024.
Article in English | MEDLINE | ID: mdl-38669256

ABSTRACT

Endometrial cancer is the most prevalent gynecologic malignancy with a high risk of recurrence. Local recurrence occurs in 7-20% of patients with treated stage I cancer within 3 years after primary treatment. In this study, we found significantly elevated mRNA expression levels of the oncoprotein KRAS, along with two replicative stress markers, ATR and CHEK1, in samples of endometrial carcinomas of endometrium (ECE) from patients with relapse. In contrast, mRNA expression levels of the studied genes were low and uniform in samples from patients without relapse. Elevated levels of KRAS protein and the phosphorylated form of ATR/CHEK1 were distinguishing features of recurrent ECE. A strong positive correlation was found between elevated mRNA and protein levels of the studied molecules. Elevated KRAS protein levels are characteristic of poorly differentiated (G3) endometrial carcinomas with deep myometrial invasion in patients without recurrence. In contrast, in patients with recurrence, higher protein levels of KRAS, pATR and pCHEK1 were observed in samples of G1-2 endometrial carcinomas, with statistically significant differences confirmed for pATR. High pCHEK1 protein levels are associated with deep tumor invasion in the myometrium among patients with recurrence. ROC analysis confirmed that evaluating the specificity and sensitivity of KRAS, pATR and pCHEK1 predicts recurrence development in patients with ECE. Our findings indicate that markers of replicative stress may play a significant role in ECE pathogenesis. Determining their levels in tumor samples after primary treatment could help define patients at high risk of recurrence and guide consequent courses of treatment.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Checkpoint Kinase 1 , Endometrial Neoplasms , Neoplasm Recurrence, Local , Proto-Oncogene Proteins p21(ras) , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Middle Aged , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/metabolism , Risk Factors , Aged , ras Proteins/genetics , ras Proteins/metabolism , Gene Expression Regulation, Neoplastic , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
7.
Cancer Lett ; 591: 216873, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604313

ABSTRACT

Oncogenic RAS and RAF signaling has been implicated in contributing to radioresistance in pancreatic and thyroid cancers. In this study, we sought to better clarify molecular mechanisms contributing to this effect. We discovered that miRNA 296-3p (miR-296-3p) is significantly correlated with radiosensitivity in a panel of pancreatic cancer cells, and miR-296-3p is highly expressed in normal cells, but low in cancer cell lines. Elevated expression of miR-296-3p increases radiosensitization while decreasing the expression of the DNA repair enzyme RAD18 in both pancreatic and thyroid cancer cells. RAD18 is overexpressed in both pancreatic and thyroid tumors compared to matched normal controls, and high expression of RAD18 in tumors is associated with poor prognostic features. Modulating the expression of mutant KRAS in pancreatic cancer cells or mutant BRAF in thyroid cancer cells demonstrates a tight regulation of RAD18 expression in both cancer types. Depletion of RAD18 results in DNA damage and radiation-induced cell death. Importantly, RAD18 depletion in combination with radiotherapy results in marked and sustained tumor regression in KRAS mutant pancreatic cancer orthotopic tumors and BRAF mutant thyroid heterotopic tumors. Overall, our findings identify a novel coordinated RAS/RAF-miR-296-3p-RAD18 signaling network in pancreatic and thyroid cancer cells, which leads to enhanced radioresistance.


Subject(s)
DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , MicroRNAs , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Radiation Tolerance , Signal Transduction , Thyroid Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Radiation Tolerance/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins B-raf/genetics , Mice, Nude , Mutation , DNA Damage , Xenograft Model Antitumor Assays , ras Proteins/genetics , ras Proteins/metabolism , Transfection
8.
Nat Rev Cancer ; 24(5): 316-337, 2024 May.
Article in English | MEDLINE | ID: mdl-38627557

ABSTRACT

Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Mutation , ras Proteins/metabolism , ras Proteins/genetics , ras Proteins/antagonists & inhibitors , Molecular Targeted Therapy , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Signal Transduction , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology
9.
Bioorg Chem ; 147: 107316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583246

ABSTRACT

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Subject(s)
ras Proteins , Humans , ras Proteins/metabolism , ras Proteins/antagonists & inhibitors , ras Proteins/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Proteolysis/drug effects , Molecular Structure , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Endopeptidases
10.
Chem Biol Interact ; 395: 111007, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38642817

ABSTRACT

Mitomycin C (MC) is an anti-cancer drug which functions by forming interstrand crosslinks (ICLs) between opposing DNA strands. MC analog, 10-decarbamoyl mitomycin C (DMC), unlike MC, has stronger cytotoxic effects on cancer cells with TP53 mutation. We previously demonstrated that MC/DMC could activate p21WAF1/CIP1 in MCF-7 (TP53-proficient) and K562 (TP53 deficient) cells in a TP53-independent mode. We also found that MC/DMC regulate AKT activation in a TP53-dependent manner and that AKT deactivation is not associated with the activation of p21WAF1/CIP1 in response to MC/DMC treatment. RAS proteins are known players in the upstream mediated signaling of p21WAF1/CIP1 activation that leads to control of cell proliferation and cell death. Thus, this prompted us to investigate the effect of both drugs on the expression of RAS proteins and regulation of the MAPK/ERK signaling pathways in MCF-7 and K562 cancer cells. To accomplish this goal, we performed comparative label free proteomics profiling coupled to bioinformatics/complementary phosphoprotein arrays and Western blot validations of key signaling molecules. The MAPK/ERK pathway exhibited an overall downregulation upon MC/DMC treatment in MCF-7 cells but only DMC exhibited a mild downregulation of that same pathway in TP53 mutant K562 cells. Furthermore, treatment of MCF-7 and K562 cell lines with oligonucleotides containing the interstrand crosslinks (ICLs) formed by MC or DMC shows that both ICLs had a stronger effect on the downregulation of RAS protein expression in mutant TP53 K562 cells. We discuss the implication of this regulation of the MAPK/ERK pathway in relation to cellular TP53 status.


Subject(s)
MAP Kinase Signaling System , Mitomycin , ras Proteins , Humans , Mitomycin/pharmacology , K562 Cells , ras Proteins/metabolism , MCF-7 Cells , MAP Kinase Signaling System/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
11.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473778

ABSTRACT

Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Signal Transduction , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Dimerization , Signal Transduction/genetics , Lipid Bilayers , Protein Isoforms/metabolism , ras Proteins/metabolism , Membrane Proteins/metabolism
12.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474278

ABSTRACT

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Voltage-Dependent Anion Channels , Mice , Animals , Voltage-Dependent Anion Channels/metabolism , Neuroprotection , Neurodegenerative Diseases/metabolism , ras Proteins/metabolism , Down-Regulation , Voltage-Dependent Anion Channel 1/metabolism , Cell Membrane/metabolism , Mice, Transgenic , RNA, Messenger/metabolism , Voltage-Dependent Anion Channel 2/metabolism
13.
Can J Cardiol ; 40(5): 789-799, 2024 May.
Article in English | MEDLINE | ID: mdl-38432396

ABSTRACT

The term "RASopathies" designates a group of developmental syndromes that are caused by activating variants of the rat sarcoma virus protein (RAS)/mitogen-activated protein kinase (MAPK) cascade. The most prevalent clinical diagnosis is Noonan syndrome, and other, less prevalent conditions include Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, and others. Hypertrophic cardiomyopathy occurs in 10% of these patients and can be severe and life-threating. Recently, repurposing of medications inhibiting the RAS/MAPK on a compassionate use basis has emerged as a promising concept to improve the outcome of these patients. Herein, we specifically review the role of the RAS/MAPK pathway in RASopathy-associated cardiomyopathy, and discuss the role of small-molecule inhibition in the treatment of this condition. We describe how drug repurposing of trametinib (mitogen-activated protein/extracellular signal-regulated kinase inhibition) and sirolimus/everolimus (mammalian target of rapamycin inhibition) was performed, how genotype-specific therapies are chosen and followed, as well as initial outcomes from early case series. Finally, we lay out the challenges and opportunities for trials that aim to quantify the benefits of this approach.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/diagnosis , Pyrimidinones/therapeutic use , Pyrimidinones/pharmacology , Pyridones/therapeutic use , Pyridones/pharmacology , Drug Repositioning , Noonan Syndrome/drug therapy , Noonan Syndrome/genetics , Everolimus/therapeutic use , Everolimus/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Sirolimus/pharmacology , Sirolimus/therapeutic use , ras Proteins/genetics , ras Proteins/metabolism , Costello Syndrome/genetics , Costello Syndrome/diagnosis
14.
Cancer Sci ; 115(5): 1576-1586, 2024 May.
Article in English | MEDLINE | ID: mdl-38468443

ABSTRACT

While loss of function (LOF) of retinoblastoma 1 (RB1) tumor suppressor is known to drive initiation of small-cell lung cancer and retinoblastoma, RB1 mutation is rarely observed in breast cancers at their initiation. In this study, we investigated the impact on untransformed mammary epithelial cells given by RB1 LOF. Depletion of RB1 in anon-tumorigenic MCF10A cells induced reversible growth arrest (quiescence) featured by downregulation of multiple cyclins and MYC, upregulation of p27KIP1, and lack of expression of markers which indicate cellular senescence or epithelial-mesenchymal transition (EMT). We observed a similar phenomenon in human mammary epithelial cells (HMEC) as well. Additionally, we found that RB1 depletion attenuated the activity of RAS and the downstream MAPK pathway in an RBL2/p130-dependent manner. The expression of farnesyltransferase ß, which is essential for RAS maturation, was found to be downregulated following RB1 depletion also in an RBL2/p130-dependent manner. These findings unveiled an unexpected mechanism whereby normal mammary epithelial cells resist to tumor initiation upon RB1 LOF.


Subject(s)
Down-Regulation , Epithelial Cells , Retinoblastoma Binding Proteins , Signal Transduction , ras Proteins , Humans , Epithelial Cells/metabolism , Female , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Binding Proteins/genetics , ras Proteins/metabolism , ras Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mammary Glands, Human/cytology , Cell Line, Tumor , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics
15.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338709

ABSTRACT

Oncogenic Ras proteins are known to present multiple conformational states, as reported by the great variety of crystallographic structures. The GTP-bound states are grouped into two main states: the "inactive" state 1 and the "active" state 2. Recent reports on H-Ras have shown that state 2 exhibits two substates, directly related to the orientation of Tyr32: toward the GTP-bound pocket and outwards. In this paper, we show that N-Ras exhibits another substate of state 2, related to a third orientation of Tyr32, toward Ala18 and parallel to the GTP-bound pocket. We also show that this substate is highly sampled in the G12V mutation of N-Ras and barely present in its wild-type form, and that the G12V mutation prohibits the sampling of the GTPase-activating protein (GAP) binding substate, rendering this mutation oncogenic. Furthermore, using molecular dynamics simulations, we explore the importance of the membrane on N-Ras' conformational state dynamics and its strong influence on Ras protein stability. Moreover, the membrane has a significant influence on the conformational (sub)states sampling of Ras. This, in turn, is of crucial importance in the activation/deactivation cycle of Ras, due to the binding of guanine nucleotide exchange factor proteins (GEFs)/GTPase-activating proteins (GAPs).


Subject(s)
Guanine Nucleotide Exchange Factors , Point Mutation , Proto-Oncogene Proteins p21(ras) , Guanine Nucleotide Exchange Factors/genetics , Guanosine Triphosphate/metabolism , Mutation , ras Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/physiology , Molecular Dynamics Simulation
16.
Cell Mol Biol Lett ; 29(1): 27, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383288

ABSTRACT

BACKGROUND: The R-RAS2 is a small GTPase highly similar to classical RAS proteins at the regulatory and signaling levels. The high evolutionary conservation of R-RAS2, its links to basic cellular processes and its role in cancer, make R-RAS2 an interesting research topic. To elucidate the evolutionary history of R-RAS proteins, we investigated and compared structural and functional properties of ancestral type R-RAS protein with human R-RAS2. METHODS: Bioinformatics analysis were used to elucidate the evolution of R-RAS proteins. Intrinsic GTPase activity of purified human and sponge proteins was analyzed with GTPase-GloTM Assay kit. The cell model consisted of human breast cancer cell lines MCF-7 and MDA-MB-231 transiently transfected with EsuRRAS2-like or HsaRRAS2. Biological characterization of R-RAS2 proteins was performed by Western blot on whole cell lysates or cell adhesion protein isolates, immunofluorescence and confocal microscopy, MTT test, colony formation assay, wound healing and Boyden chamber migration assays. RESULTS: We found that the single sponge R-RAS2-like gene/protein probably reflects the properties of the ancestral R-RAS protein that existed prior to duplications during the transition to Bilateria, and to Vertebrata. Biochemical characterization of sponge and human R-RAS2 showed that they have the same intrinsic GTPase activity and RNA binding properties. By testing cell proliferation, migration and colony forming efficiency in MDA-MB-231 human breast cancer cells, we showed that the ancestral type of the R-RAS protein, sponge R-RAS2-like, enhances their oncogenic potential, similar to human R-RAS2. In addition, sponge and human R-RAS2 were not found in focal adhesions, but both homologs play a role in their regulation by increasing talin1 and vinculin. CONCLUSIONS: This study suggests that the ancestor of all animals possessed an R-RAS2-like protein with oncogenic properties similar to evolutionarily more recent versions of the protein, even before the appearance of true tissue and the origin of tumors. Therefore, we have unraveled the evolutionary history of R-RAS2 in metazoans and improved our knowledge of R-RAS2 properties, including its structure, regulation and function.


Subject(s)
Breast Neoplasms , Monomeric GTP-Binding Proteins , Animals , Female , Humans , Breast Neoplasms/genetics , Cell Proliferation , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Signal Transduction
17.
Zhonghua Zhong Liu Za Zhi ; 46(2): 108-117, 2024 Feb 23.
Article in Chinese | MEDLINE | ID: mdl-38418184

ABSTRACT

Objective: To investigate the role and the mechanism of Ras-associated binding protein23 (RAB23) in the migration and invasion of esophageal squamous cell carcinoma (ESCC) cells. Methods: RAB23 mRNA levels were measured in 16 pairs of ESCC and adjacent normal tissues via real-time polymerase chain reactions. RAB23 mRNA levels in the ESCC and adjacent normal tissues of dataset GSE20347 deposited in the Gene Expression Omnibus (GEO) database were also analyzed. Immunohistochemistry (IHC) was used to detect the RAB23 protein expressions in 106 pairs of ESCC and adjacent normal tissues, as well as in the lymph glands and primary tumor tissues of 33 patients with positive lymph nodes and 10 patients with negative lymph nodes. Endogenous RAB23 expression was transiently depleted using siRNAs (si-NC, si-RAB23-1, and si-RAB23-9) or stably reduced using shRNAs (sh-NC and sh-RAB23) in ESCC KYSE30 and KYSE150 cells, and the knockdown efficiency was tested using Western blot assays. Cell counting kit-8 assays and mouse xenograft models were used to test the proliferation of ESCC cells. Transwell assays and tail vein-pulmonary metastasis models in immunocompromised mice were used to examine the migration and invasion of ESCC cells. Cell adhesion assays were used to test the adhesion of ESCC cells. RNA-seq assays were used to analyze how RAB23 knockdown influenced the expression profile of ESCC cells and the implicated signal pathways were confirmed using Western blot assays. Results: The RAB23 mRNA expression in 16 cases of ESCC tissues was 0.009 7±0.008 9, which was markedly higher than that in adjacent normal tissues (0.003 2±0.003 7, P=0.006). GEO analysis on RAB23 expressions in ESCC and adjacent normal tissues showed that the RAB23 mRNA level in ESCC tissues (4.30±0.25) was remarkably increased compared with their normal counterparts (4.10±0.17, P=0.037). Among the 106 pairs of ESCC and tumor-adjacent normal tissues, 51 cases exhibited low expression of RAB23 and 55 cases showed high expression of RAB23, whereas in the paired tumor-adjacent normal tissues 82 cases were stained weakly and 24 strongly for RAB23 protein. These results indicated that RAB23 expression was markedly increased in ESCC tissues (P<0.001). Additionally, only 1 out of 33 primary ESCC tissues with positive lymph nodes showed low RAB23 protein expression. On the other hand, 7 samples of primary ESCC tissues with negative lymph nodes were stained strongly for RAB23 while its level in the other 3 samples was weak. These results showed that RAB23 expression was remarkably increased in primary ESCC tissues with positive lymph nodes compared with those with negative lymph nodes (P=0.024). Further tests showed that 32 out of 33 positive lymph nodes were stained strongly for RAB23, whereas no negative lymph nodes (n=10) exhibited high expression of RAB23 (P<0.001). Both transient and stable knockdown of endogenous RAB23 expression failed to cause detectable changes in the proliferation of KYSE30 cells in vitro and in vivo, but attenuated the migration and invasion of KYSE30 cells as well as the invasion of KYSE150 cells. RAB23 knockdown was found to significantly decrease the number of adhesive KYSE30 cells in the sh-RAB23 group (313.75±89.34) compared with control cells in the sh-NC group (1 030.75±134.29, P<0.001). RAB23 knockdown was also found to significantly decrease the number of adhesive KYSE150 cells in the sh-RAB23 group (710.5±31.74) compared with the number of control cells in the sh-NC group (1 005.75±61.09, P<0.001). RNA-seq assays demonstrated that RAB23 knockdown using two siRNAs targeting RAB23 mRNA markedly impaired focal adhesion-related signal pathways, and decreased the levels of phosphorylated FAK (p-FAK) and phosphorylated paxillin (p-paxillin) in KYSE30 and KYSE150 cells. Conclusions: Significantly increased RAB23 in ESCC tissues positively correlates with lymph node metastasis. Depleted RAB23 expression attenuates focal adhesion-related signal pathways, thus impairing the invasion, metastasis, and adhesion of ESCC cells.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Animals , Mice , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Paxillin/genetics , Paxillin/metabolism , Carrier Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Cell Line, Tumor , Cell Movement , Neoplasm Invasiveness/genetics , Cell Proliferation , RNA, Small Interfering/genetics , RNA, Messenger , Gene Expression Regulation, Neoplastic , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
18.
Biophys J ; 123(7): 839-846, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38419331

ABSTRACT

Ras proteins are important intracellular signaling hubs that can interact with numerous downstream effectors and upstream regulators through their GTPase domains (G-domains) anchored to plasma membranes by the C-terminal hypervariable regions (HVRs). The biological functions of Ras were proposed to be regulated at multiple levels including the intramolecular G-domain-HVR interactions, of which the exact mechanism and specificity are still controversial. Here, we demonstrate that the HVRs, instead of having direct contacts, can weakly perturb the G-domains via an allosteric interaction that is restricted to a ∼20 Å range and highly conserved in the tested Ras isoforms (HRas and KRas4B) and nucleotide-bound states. The origin of this allosteric perturbation has been localized to a short segment (residues 167-171) coinciding with region 1 of HVRs, which exhibits moderate to weak α-helical propensities. A charge-reversal mutation (E168K) of KRas4B in region 1, previously described in the Catalog of Somatic Mutations in Cancer database, was found to induce similar chemical shift perturbations as truncation of the HVR does. Further membrane paramagnetic relaxation enhancement (mPRE) data show that this region 1 mutation alters the membrane orientations of KRas4B and moderately increases the relative population of the signaling-compatible state.


Subject(s)
Signal Transduction , ras Proteins , Protein Isoforms/chemistry , Cell Membrane/metabolism , Mutation , ras Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
19.
Cancer Lett ; 586: 216694, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38307409

ABSTRACT

The KRASG12D mutation was believed to be locked in a GTP-bound form, rendering it fully active. However, recent studies have indicated that the presence of mutant KRAS alone is insufficient; it requires additional activation through inflammatory stimuli to effectively drive the development of pancreatic ductal adenocarcinoma (PDAC). It remains unclear to what extent RAS activation occurs during the development of PDAC in the context of inflammation. Here, in a mouse model with the concurrent expression of KrasG12D/+ and inflammation mediator IKK2 in pancreatic acinar cells, we showed that, compared to KRASG12D alone, the cooperative interaction between KRASG12D and IKK2 rapidly elevated both the protein level and activity of KRASG12D and NRAS in a short term. This high level was sustained throughout the rest phase of PDAC development. These results suggest that inflammation not only rapidly augments the activity but also the protein abundance, leading to an enhanced total amount of GTP-bound RAS (KRASG12D and NRAS) in the early stage. Notably, while KRASG12D could be further activated by IKK2, not all KRASG12D proteins were in the GTP-bound state. Overall, our findings suggest that although KRASG12D is not fully active in the context of inflammation, concurrent increases in both the protein level and activity of KRASG12D as well as NRAS at the early stage by inflammation contribute to the rise in total GTP-bound RAS.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Mutation , Inflammation/genetics , Guanosine Triphosphate
20.
J Phys Chem B ; 128(6): 1418-1427, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38323538

ABSTRACT

In cells, wild-type RasGTP complexes exist in two distinct states: active State 2 and inactive State 1. These complexes regulate their functions by transitioning between the two states. However, the mechanisms underlying this state transition have not been clearly elucidated. To address this, we conducted a detailed simulation study to characterize the energetics of the stable states involved in the state transitions of the HRasGTP complex, specifically from State 2 to State 1. This was achieved by employing multiscale quantum mechanics/molecular mechanics and enhanced sampling molecular dynamics methods. Based on the simulation results, we constructed the two-dimensional free energy landscapes that provide crucial information about the conformational changes of the HRasGTP complex from State 2 to State 1. Furthermore, we also explored the conformational changes from the intermediate state to the product state during guanosine triphosphate hydrolysis. This study on the conformational changes involved in the HRas state transitions serves as a valuable reference for understanding the corresponding events of both KRas and NRas as well.


Subject(s)
Molecular Dynamics Simulation , ras Proteins , ras Proteins/metabolism , Guanosine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...