ABSTRACT
ß-Subunits of the Ca2+ channel have been conventionally regarded as auxiliary subunits that regulate the expression and activity of the pore-forming α1 subunit. However, they comprise protein-protein interaction domains, such as a SRC homology 3 domain (SH3) domain, which make them potential signaling molecules. Here we evaluated the role of the ß2a subunit of the Ca2+ channels (CaV ß2a) and its SH3 domain (ß2a-SH3) in late stages of channel trafficking in bovine adrenal chromaffin cells. Cultured bovine adrenal chromaffin cells were injected with CaV ß2a or ß2a-SH3 under different conditions, in order to acutely interfere with endogenous associations of these proteins. As assayed by whole-cell patch clamp recordings, Ca2+ currents were reduced by CaV ß2a in the presence of exogenous α1-interaction domain. ß2a-SH3, but not its dimerization-deficient mutant, also reduced Ca2+ currents. Na+ currents were also diminished following ß2a-SH3 injection. Furthermore, ß2a-SH3 was still able to reduce Ca2+ currents when dynamin-2 function was disrupted, but not when SNARE-dependent exocytosis or actin polymerization was inhibited. Together with the additional finding that both CaV ß2a and ß2a-SH3 diminished the incorporation of new actin monomers to cortical actin filaments, ß2a-SH3 emerges as a signaling module that might down-regulate forward trafficking of ion channels by modulating actin dynamics.
Subject(s)
Actins/metabolism , Calcium Channels, L-Type/metabolism , Chromaffin Cells/metabolism , Down-Regulation/physiology , src Homology Domains/physiology , Animals , Cattle , Cells, Cultured , Protein Subunits/metabolism , Protein Transport/physiology , RabbitsABSTRACT
UNLABELLED: STAT3-driven expression of small proline rich protein 2a (SPRR2a), which acts as an src homology 3 (SH3) domain ligand, induces biliary epithelial cell (BEC) epithelial-mesenchymal transition (EMT), which, in turn, promotes wound healing. SPRR2a also quenches free radicals and protects against oxidative stress and DNA damage in nonneoplastic BEC. Sprr2a-induced EMT also increases local invasiveness of cholangiocarcinomas (CC), but prevents metastases. Understanding SPRR2a regulation of EMT has potential for therapeutic targeting in both benign and malignant liver disease. Molecular mechanisms responsible for SPRR2a-induced EMT were characterized, in vitro, and then evidence for utilization of these pathways was sought in human intrahepatic CC, in vivo, using multiplex labeling and software-assisted morphometric analysis. SPRR2a complexes with ZEB1 and CtBP on the microRNA (miR)-200c/141 promoter resulting in synergic suppression of miR-200c/141 transcription, which is required for maintenance of the BEC epithelial phenotype. SPRR2a induction promotes dephosphorylation and nuclear translocation of the SH3-domain containing protein GRB2 and an SH3-domain ligand in ZEB1 is required for SPRR2a-induced synergic suppression of miR-200c/141. Multiplex protein labeling of CC and morphometric analyses showed: 1) up-regulation of ZEB-1, and 2) down-regulation of CK19 in intrahepatic CC compared to nonneoplastic BEC, consistent with previous CC proteomic studies showing EMT during cholangiocarcinogenesis. CONCLUSION: SPRR2a modulates ZEB-1 signaling by way of miR-200c/141-associated EMT through SH3-domain networks and contributes to benign and malignant BEC wound-healing responses.
Subject(s)
Bile Duct Neoplasms/physiopathology , Bile Ducts, Intrahepatic/physiopathology , Cholangiocarcinoma/physiopathology , Cornified Envelope Proline-Rich Proteins/metabolism , Epithelial-Mesenchymal Transition/physiology , Liver Diseases/physiopathology , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Cell Line, Tumor , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cornified Envelope Proline-Rich Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/cytology , Epithelial Cells/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Liver Diseases/genetics , Liver Diseases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Wound Healing/physiology , Zinc Finger E-box-Binding Homeobox 1 , src Homology Domains/physiologyABSTRACT
OBJECTIVE: The aim of this study was to evaluate the expression of protein tyrosine kinase 2 and protein tyrosine phosphatase non-receptor type 11, which respectively encode focal adhesion kinase protein and src homology 2 domain-containing protein-tyrosine phosphatase 2, in hematopoietic cells from patients with myelodysplastic syndromes. METHODS: Protein tyrosine kinase 2 and tyrosine phosphatase non-receptor type 11 expressions were analyzed by quantitative polymerase chain reaction in bone marrow cells from patients with myelodysplastic syndromes and healthy donors. RESULTS: Protein tyrosine kinase 2 and tyrosine phosphatase non-receptor type 11 expressions did not significantly differ between normal cells and myelodysplastic cells. CONCLUSIONS: Our data suggest that despite the relevance of focal adhesion kinase and src homology 2 domain-containing protein-tyrosine phosphatase 2 in hematopoietic disorders, their mRNA expression do not significantly differ between total bone marrow cells from patients with myelodysplastic syndromes and healthy donors.
Subject(s)
Bone Marrow Cells/metabolism , Focal Adhesion Kinase 2/metabolism , Myelodysplastic Syndromes/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Female , Focal Adhesion Kinase 2/analysis , Focal Adhesion Protein-Tyrosine Kinases/analysis , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Polymerase Chain Reaction , Prognosis , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Risk Factors , Statistics, Nonparametric , Young Adult , src Homology Domains/physiologyABSTRACT
OBJECTIVE: The aim of this study was to evaluate the expression of protein tyrosine kinase 2 and protein tyrosine phosphatase non-receptor type 11, which respectively encode focal adhesion kinase protein and src homology 2 domain-containing protein-tyrosine phosphatase 2, in hematopoietic cells from patients with myelodysplastic syndromes. METHODS: Protein tyrosine kinase 2 and tyrosine phosphatase non-receptor type 11 expressions were analyzed by quantitative polymerase chain reaction in bone marrow cells from patients with myelodysplastic syndromes and healthy donors. RESULTS: Protein tyrosine kinase 2 and tyrosine phosphatase non-receptor type 11 expressions did not significantly differ between normal cells and myelodysplastic cells. CONCLUSIONS: Our data suggest that despite the relevance of focal adhesion kinase and src homology 2 domain-containing protein-tyrosine phosphatase 2 in hematopoietic disorders, their mRNA expression do not significantly differ between total bone marrow cells from patients with myelodysplastic syndromes and healthy donors. .
Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Bone Marrow Cells/metabolism , /metabolism , Myelodysplastic Syndromes/metabolism , /analysis , /analysis , Focal Adhesion Protein-Tyrosine Kinases/analysis , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Myelodysplastic Syndromes/genetics , Polymerase Chain Reaction , Prognosis , /metabolism , Risk Factors , Statistics, Nonparametric , src Homology Domains/physiologyABSTRACT
To investigate the influence of chronic GH deficiency on GH signaling in vivo, we have analyzed Janus kinase (JAK) 2/signal transducers and activators of transcription (STAT) 5 GH signaling pathway, and its regulation by the suppressors of the cytokine signaling SOCS and by the JAK2-interacting protein SH2-Bbeta, in liver of Ames dwarf (Prop1df/Prop1df) mice, which are severely deficient in GH, prolactin and TSH, and of their normal littermates. Prop1df/Prop1df mice displayed unaltered GH receptor, JAK2 and STAT5a/b protein levels. No significant differences in the basal tyrosine-phosphorylation levels of JAK2 and STAT5a/b were found between both groups of animals. After in vivo administration of a high GH dose (5 microg/g body weight (BW)), the tyrosine-phosphorylation levels of JAK2 and STAT5a/b increased significantly, reaching similar values in normal and dwarf mice. However, after stimulation with lower GH doses (50 and 15 ng/g BW) the tyrosine-phosphorylation level of STAT5a/b was higher in dwarf mice. The protein content of CIS, a SOCS protein that inhibits STAT5 signaling, was approximately 80% lower in dwarf mice liver, while SOCS-2 and SOCS-3 levels were unaltered. The content of SH2-Bbeta, a modulator of JAK2 activity, was reduced by approximately 30% in dwarf mice, although this was associated with normal JAK2 response to a high GH dose. In summary, Prop1df/Prop1df mice display increased hepatic sensitivity to GH, an effect that could be related to the lower abundance of CIS in this tissue. Furthermore, the lower CIS content found in this model of GH deficiency suggests that CIS protein levels are regulated by GH in vivo.
Subject(s)
Growth Hormone/deficiency , Immediate-Early Proteins/analysis , Liver/physiology , Adaptor Proteins, Signal Transducing/analysis , Animals , Cytokines/metabolism , Female , Growth Hormone/metabolism , Growth Hormone/physiology , Janus Kinase 2 , Liver/metabolism , Mice , Mice, Inbred Strains , Models, Animal , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, Somatotropin/analysis , STAT5 Transcription Factor/metabolism , Signal Transduction/physiology , Suppressor of Cytokine Signaling Proteins/analysis , Tyrosine/metabolism , src Homology Domains/physiologyABSTRACT
The actions of LH are mediated through a single class of cell surface LH/human chorionic gonadotropin receptor, which is a member of the G protein-coupled receptor family. In the present study we showed that LH induced rapid tyrosine phosphorylation and activation of the Janus kinase 2 (JAK2) in rat ovary. Upon JAK2 activation, tyrosine phosphorylation of signal transducer and activator of transcription-1 (STAT-1), STAT-5b, insulin receptor substrate-1 (IRS-1), and Src homology and collagen homology (Shc) were detected. In addition, LH induced IRS-1/phosphoinositol 3-kinase and Shc /growth factor receptor-binding protein 2 (Grb2) associations and downstream AKT (protein kinase B, homologous to v-AKT) serine phosphorylation and ERK tyrosine phosphorylation, respectively. The simultaneous infusion of insulin and LH induced higher phosphorylation levels of JAK2, STAT5b, IRS-1, and AKT compared with each hormone alone in the whole ovary of normal rats. By immunohistochemistry we demonstrated that these late events take place in follicular cells and both external and internal theca. These results indicate a new signal transduction pathway for LH and show that there is positive cross-talk between the insulin and LH signaling pathways at the level of phosphoinositol 3-kinase/AKT pathway in this tissue.
Subject(s)
DNA-Binding Proteins/metabolism , Insulin/metabolism , Luteinizing Hormone/metabolism , Milk Proteins , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Trans-Activators/metabolism , Animals , Female , Insulin Receptor Substrate Proteins , Janus Kinase 2 , Luteinizing Hormone/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Ovary/enzymology , Phosphoproteins/metabolism , Phosphorylation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Rats , Rats, Wistar , Receptor Cross-Talk/physiology , STAT1 Transcription Factor , STAT5 Transcription Factor , Signal Transduction/drug effects , Tyrosine/metabolism , src Homology Domains/physiologyABSTRACT
Growth hormone (GH) has long been recognized as one of the principal factors that control postnatal growth. Advances made in the last 5 years have increased our understanding of the intracellular signaling mechanisms subsequent to GH binding. The earliest event in GH signaling appears to be the binding of a single GH molecule by a pair of GH receptors (GHRs). The dimerization of GHRs leads to the activation of Janus kinase 2 (JAK2), a nonreceptor tyrosine kinase that associates with the cytoplasmic domain of GHR. It is thought that all signaling downstream from GHR depends on this initial activation of JAK2. Once activated, JAK2 tyrosyl-phosphorylates both itself and the cytoplasmic domain of GHR. These phosphorylated tyrosine residues act as docking sites for various signaling molecules that contain Src homology 2 (SH-2) or other phosphotyrosyl-binding domains. The signaling molecules that are recruited and activated by the GHR-JAK2 complex include signal transducers and activators of transcription (Stat) factors, the adapter protein Shc, and the insulin receptor substrates (IRSs) 1 and 2. The recruitment and activation of these signaling intermediates leads to the activation of enzymes such as MAP kinase, phosphatidylinositol-3'-kinase, protein kinase C, and phospholipase A2 and to the release of various second messengers such as diacylglycerol, calcium, and nitric oxide. Ultimately, these pathways modulate cellular functions such as gene transcription, metabolite transport, and enzymatic activities that affect the GH-dependent control of growth and metabolism.