Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.150
Filter
1.
Science ; 376(6594): 679-680, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35549399
2.
N Engl J Med ; 386(14): 1361-1362, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35388673
3.
Cell Host Microbe ; 30(4): 545-555.e4, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35364015

ABSTRACT

The SARS-CoV-2 pandemic has resulted in numerous virus variants, some of which have altered receptor-binding or antigenic phenotypes. Here, we quantify the degree to which adaptive evolution is driving the accumulation of mutations across the genome. We correlate clade growth with mutation accumulation, compare rates of nonsynonymous to synonymous divergence, assess temporal clustering of mutations, and evaluate the evolutionary success of individual mutations. We find that spike S1 is the focus of adaptive evolution but also identify positively selected mutations in other proteins (notably Nsp6) that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5× greater than that observed in influenza hemagglutinin HA1 at the beginning of the 2009 H1N1 pandemic. These findings uncover a high degree of adaptation in S1 and suggest that SARS-CoV-2 might undergo antigenic drift.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Cell Rep ; 39(2): 110680, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35395191

ABSTRACT

Knowledge about the impact of prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the elderly on mRNA vaccination response is needed to appropriately address the demand for additional vaccinations in this vulnerable population. Here, we show that octogenarians, a high-risk population, mount a sustained SARS-CoV-2 spike-specific immunoglobulin G (IgG) antibody response for 15 months following infection. This response boosts antibody levels 35-fold upon receiving a single dose of BNT162b2 mRNA vaccine 15 months after recovery from coronavirus disease 2019 (COVID-19). In contrast, antibody responses in naive individuals boost only 6-fold after a second vaccine. Spike-specific angiotensin-converting enzyme 2 (ACE2) antibody binding responses in the previously infected octogenarians following two vaccine doses exceed those found in a naive cohort after two doses. RNA sequencing (RNA-seq) demonstrates activation of interferon-induced genetic programs, which persist only in the previously infected. A preferential increase of specific immunoglobulin G heavy chain variable (IGHV) clonal transcripts that are the basis of neutralizing antibodies is observed only in the previously infected nuns.


Subject(s)
Antibody Formation , COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Humans , Immunoglobulin G , RNA, Messenger/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vaccination , Vaccines, Synthetic , /therapeutic use
8.
Signal Transduct Target Ther ; 7(1): 138, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35474215

ABSTRACT

The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, 18 core mutations of BA.1 (frequency >99%) and 27 core mutations of BA.2 (nine more than BA.1) were identified, of which 15 are specific to Omicron. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations in BA.1 than BA.2, and BA.1 is phylogenetically closer to Alpha than other variants. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1. Most notably, multiple characteristic amino acid mutations in the Delta spike protein have been also identified in the "Deltacron"-like Omicron Variants isolated since November 11, 2021 in South Africa, which implies the recombination events occurring between the Omicron and Delta variants. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acids , COVID-19/virology , Genome, Viral/genetics , Humans , Mutation/genetics , Recombination, Genetic/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Urologiia ; (2): 122-125, 2022 May.
Article in Russian | MEDLINE | ID: mdl-35485825

ABSTRACT

The SARS-CoV-2 pandemic has brought serious economic and social problems worldwide'. Due to its medical consequences, it is of importance to study the mechanisms of the disease and new therapeutic interventions, as well as rehabilitation processes. Despite the fact that the genome of the new coronavirus has been sequenced and studied, clinical and epidemiological data are constantly updated and analyzed, and exact pathogenesis has not yet been understood. At the same time, domestic and foreign studies suggest that the virus is an agent that affects not only the lungs, vascular wall, hemostasis, but also the reproductive system. The aim of the review is to summarize the current knowledge about novel SARS-CoV-2, including its pathophysiology and potential impact on male reproductive function.


Subject(s)
COVID-19/complications , Genital Diseases, Male/virology , Genitalia, Male/physiopathology , Genitalia, Male/virology , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/virology , Genital Diseases, Male/epidemiology , Genital Diseases, Male/physiopathology , Humans , Male , Reproductive Health , SARS-CoV-2/genetics
10.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35439007

ABSTRACT

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/drug therapy , COVID-19/virology , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/chemistry , Humans , Methyltransferases , Molecular Docking Simulation , RNA, Viral/genetics , S-Adenosylmethionine , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
11.
J Virol ; 96(8): e0003722, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35389264

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose an enormous threat to economic activity and public health worldwide. Previous studies have shown that the nonstructural protein 5 (nsp5, also called 3C-like protease) of alpha- and deltacoronaviruses cleaves Q231 of the NF-κB essential modulator (NEMO), a key kinase in the RIG-I-like receptor pathway, to inhibit type I interferon (IFN) production. In this study, we found that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleaved NEMO at multiple sites (E152, Q205, and Q231). Notably, SARS-CoV-2 nsp5 exhibited a stronger ability to cleave NEMO than SARS-CoV nsp5. Sequence and structural alignments suggested that an S/A polymorphism at position 46 of nsp5 in SARS-CoV versus SARS-CoV-2 may be responsible for this difference. Mutagenesis experiments showed that SARS-CoV-2 nsp5 (S46A) exhibited poorer cleavage of NEMO than SARS-CoV-2 nsp5 wild type (WT), while SARS-CoV nsp5 (A46S) showed enhanced NEMO cleavage compared with the WT protein. Purified recombinant SARS-CoV-2 nsp5 WT and SARS-CoV nsp5 (A46S) proteins exhibited higher hydrolysis efficiencies than SARS-CoV-2 nsp5 (S46A) and SARS-CoV nsp5 WT proteins in vitro. Furthermore, SARS-CoV-2 nsp5 exhibited stronger inhibition of Sendai virus (SEV)-induced interferon beta (IFN-ß) production than SARS-CoV-2 nsp5 (S46A), while introduction of the A46S substitution in SARS-CoV nsp5 enhanced suppression of SEV-induced IFN-ß production. Taken together, these data show that S46 is associated with the catalytic activity and IFN antagonism by SARS-CoV-2 nsp5. IMPORTANCE The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231). This specificity differs from NEMO cleavage by alpha- and deltacoronaviruses, demonstrating the distinct substrate recognition of SARS-CoV-2 and SARS-CoV nsp5. Compared with SARS-CoV nsp5, SARS-CoV-2 nsp5 encodes S instead of A at position 46. This substitution is associated with stronger catalytic activity, enhanced cleavage of NEMO, and increased interferon antagonism of SARS-CoV-2 nsp5. These data provide new insights into the pathogenesis and transmission of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Interferon Type I , SARS Virus , SARS-CoV-2 , Antiviral Agents , COVID-19/immunology , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Humans , Immune Evasion/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/metabolism , SARS Virus/enzymology , SARS Virus/genetics , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Virus Replication/genetics
12.
PLoS One ; 17(4): e0265220, 2022.
Article in English | MEDLINE | ID: mdl-35377884

ABSTRACT

As different SARS-CoV-2 variants emerge and with the continuous evolvement of sub lineages of the delta variant, it is crucial that all countries carry out sequencing of at least >1% of their infections, in order to detect emergence of variants with higher transmissibility and with ability to evade immunity. However, due to limited resources as many resource poor countries are unable to sequence adequate number of viruses, we compared to usefulness of a two-step commercially available multiplex real-time PCR assay to detect important single nucleotide polymorphisms (SNPs) associated with the variants and compared the sensitivity, accuracy and cost effectiveness of the Illumina sequencing platform and the Oxford Nanopore Technologies' (ONT) platform. 138/143 (96.5%) identified as the alpha and 36/39 (92.3%) samples identified as the delta variants due to the presence of lineage defining SNPs by the multiplex real time PCR, were assigned to the same lineage by either of the two sequencing platforms. 34/37 of the samples sequenced by ONT had <5% ambiguous bases, while 21/37 samples sequenced using Illumina generated <5%. However, the mean PHRED scores averaged at 32.35 by Illumina reads but 10.78 in ONT. This difference results in a base error probability of 1 in 10 by the ONT and 1 in 1000 for Illumina sequencing platform. Sub-consensus single nucleotide variations (SNV) are highly correlated between both platforms (R2 = 0.79) while indels appear to have a weaker correlation (R2 = 0.13). Although the ONT had a slightly higher error rate compared to the Illumina technology, it achieved higher coverage with a lower number or reads, generated less ambiguous bases and was significantly less expensive than Illumina sequencing technology.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , High-Throughput Nucleotide Sequencing , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Whole Genome Sequencing/methods
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 399-404, 2022 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-35426804

ABSTRACT

OBJECTIVE: To analyze the mutations in transcription regulatory sequences (TRSs) of coronaviruss (CoV) to provide the basis for exploring the patterns of SARS-CoV-2 transmission and outbreak. METHODS: A combined evolutionary and molecular functional analysis of all sets of publicly available genomic data of viruses was performed. RESULTS: A leader transcription regulatory sequence (TRS-L) usually comprises the first 60-70 nts of the 5' UTR in a CoV genome, and the body transcription regulatory sequences (TRS-Bs) are located immediately upstream of the genes other than ORF1a and 1b. In each CoV genome, the TRS-L and TRS-Bs share a specific consensus sequence, namely the TRS motif. Any changes of nucleotide residues in the TRS motifs are defined as TRS motif mutations. Mutations in the TRS-L or multiple TRS-Bs result in superattenuated variants. The spread of super-attenuated variants may cause an increase in asymptomatic or mild infections, prolonged incubation periods and a decreased detection rate of the viruses, thus posing new challenges to SARS-CoV-2 prevention and control. The super-attenuated variants also increase their possibility of long-term coexistence with humans. The Delta variant is significantly different from all the previous variants and may lead to a large-scale transmission. The Delta variant (B.1.617.2) with TRS motif mutation has already appeared and shown signs of spreading in Singapore, which, and even the Southeast Asia, may become the new epicenter of the next wave of SARS-CoV-2 outbreak. CONCLUSION: TRS motif mutation will occur in all variants of SARS-CoV-2 and may result in super-attenuated variants. Only super-attenuated variants with TRS motif mutations will eventually lose the abilities of cross-species transmission and causing outbreaks.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , COVID-19/virology , Genome, Viral , Humans , SARS-CoV-2/genetics
14.
Sci Rep ; 12(1): 4082, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260723

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as 2019 novel coronavirus (2019-nCoV), is a highly infectious RNA virus. A percentage of patients develop coronavirus disease 2019 (COVID-19) after infection, whose symptoms include fever, cough, shortness of breath and fatigue. Acute and life-threatening respiratory symptoms are experienced by 10-20% of symptomatic patients, particularly those with underlying medical conditions. One of the main challenges in the containment of COVID-19 is the identification and isolation of asymptomatic/pre-symptomatic individuals. A number of molecular assays are currently used to detect SARS-CoV-2. Many of them can accurately test hundreds or even thousands of patients every day. However, there are presently no testing platforms that enable more than 10,000 tests per day. Here, we describe the foundation for the REcombinase Mediated BaRcoding and AmplificatioN Diagnostic Tool (REMBRANDT), a high-throughput Next Generation Sequencing-based approach for the simultaneous screening of over 100,000 samples per day. The REMBRANDT protocol includes direct two-barcoded amplification of SARS-CoV-2 and control amplicons using an isothermal reaction, and the downstream library preparation for Illumina sequencing and bioinformatics analysis. This protocol represents a potentially powerful approach for community screening of COVID-19 that may be modified for application to any infectious or non-infectious genome.


Subject(s)
COVID-19/diagnosis , DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Viral Proteins/metabolism , COVID-19/virology , High-Throughput Nucleotide Sequencing , Humans , Mass Screening , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/isolation & purification
15.
J Virol ; 96(7): e0009022, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35293771

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads rapidly and harbors many mutations in the spike protein, but the origin of this virus variant remains unclear. We address the role of unusual virus evolution mechanisms such as hypermutation, out-of-frame reading, and recombination. Rather, regular Darwinian evolution, that is, the repeated selection of beneficial spike mutations, seems to have led to the appearance of the grossly altered spike protein of the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/virology , Evolution, Molecular , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
Mikrochim Acta ; 189(3): 125, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35229221

ABSTRACT

A novel electrochemical sensor is reported for the detection of the antiviral drug favipiravir based on the core-shell nanocomposite of flower-like molybdenum disulfide (MoS2) nanospheres and molecularly imprinted polymers (MIPs). The MoS2@MIP core-shell nanocomposite was prepared via the electrodeposition of a MIP layer on the MoS2 modified electrode, using o-phenylenediamine as the monomer and favipiravir as the template. The selective binding of target favipiravir at the MoS2@MIP core-shell nanocomposite produced a redox signal in a concentration dependent manner, which was used for the quantitative analysis. The preparation process of the MoS2@MIP core-shell nanocomposite was optimized. Under the optimal conditions, the sensor exhibited a wide linear response range of 0.01 ~ 100 nM (1.57*10-6 ~ 1.57*10-2 µg mL-1) and a low detection limit of 0.002 nM (3.14*10-7 µg mL-1). Application of the sensor was demonstrated by detecting favipiravir in a minimum amount of 10 µL biological samples (urine and plasma). Satisfied results in the recovery tests indicated a high potential of favipiravir monitoring in infectious COVID-19 samples.


Subject(s)
Amides/analysis , Antiviral Agents/analysis , Disulfides/chemistry , Molecularly Imprinted Polymers/chemistry , Molybdenum/chemistry , Nanocomposites/chemistry , Nanospheres/chemistry , Pyrazines/analysis , Amides/blood , Amides/therapeutic use , Amides/urine , Antiviral Agents/blood , Antiviral Agents/therapeutic use , Antiviral Agents/urine , COVID-19/drug therapy , COVID-19/virology , Electrochemical Techniques/methods , Humans , Limit of Detection , Oxidation-Reduction , Pyrazines/blood , Pyrazines/therapeutic use , Pyrazines/urine , Reproducibility of Results , SARS-CoV-2/isolation & purification
17.
Mikrochim Acta ; 189(3): 128, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35235065

ABSTRACT

This review focuses on critical scientific barriers that the field of point-of-care (POC) testing of SARS-CoV-2 is facing and possible solutions to overcome these barriers using functional nucleic acid (FNA)-based technology. Beyond the summary of recent advances in FNA-based sensors for COVID-19 diagnostics, our goal is to outline how FNA might serve to overcome the scientific barriers that currently available diagnostic approaches are suffering. The first introductory section on the operationalization of the COVID-19 pandemic in historical view and its clinical features contextualizes essential SARS-CoV-2-specific biomarkers. The second part highlights three major scientific barriers for POC COVID-19 diagnosis, that is, the lack of a general method for (1) designing receptors of SARS-CoV-2 variants; (2) improving sensitivity to overcome false negatives; and (3) signal readout in resource-limited settings. The subsequent part provides fundamental insights into FNA and technical tricks to successfully achieve effective COVID-19 diagnosis by using in vitro selection of FNA to overcome receptor design barriers, combining FNA with multiple DNA signal amplification strategies to improve sensitivity, and interfacing FNA with portable analyzers to overcome signal readout barriers. This review concludes with an overview of further opportunities and emerging applications for FNA-based sensors against COVID-19.


Subject(s)
COVID-19 Testing/methods , Nucleic Acids/chemistry , SARS-CoV-2/metabolism , Antibodies, Viral/blood , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19/virology , Humans , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
18.
Sci Rep ; 12(1): 3816, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264587

ABSTRACT

The ongoing SARS-CoV-2 pandemic has been holding the world hostage for several years now. Mobility is key to viral spreading and its restriction is the main non-pharmaceutical interventions to fight the virus expansion. Previous works have shown a connection between the structural organization of cities and the movement patterns of their residents. This puts urban centers in the focus of epidemic surveillance and interventions. Here we show that the organization of urban flows has a tremendous impact on disease spreading and on the amenability of different mitigation strategies. By studying anonymous and aggregated intra-urban flows in a variety of cities in the United States and other countries, and a combination of empirical analysis and analytical methods, we demonstrate that the response of cities to epidemic spreading can be roughly classified in two major types according to the overall organization of those flows. Hierarchical cities, where flows are concentrated primarily between mobility hotspots, are particularly vulnerable to the rapid spread of epidemics. Nevertheless, mobility restrictions in such types of cities are very effective in mitigating the spread of a virus. Conversely, in sprawled cities which present many centers of activity, the spread of an epidemic is much slower, but the response to mobility restrictions is much weaker and less effective. Investing resources on early monitoring and prompt ad-hoc interventions in more vulnerable cities may prove helpful in containing and reducing the impact of future pandemics.


Subject(s)
Communicable Diseases/transmission , Models, Theoretical , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Cities , Communicable Diseases/epidemiology , Humans , SARS-CoV-2 , United States/epidemiology
20.
Biomed Res Int ; 2022: 4551132, 2022.
Article in English | MEDLINE | ID: mdl-35252447

ABSTRACT

BACKGROUND: Deaths due to COVID-19 are common among the elderly, especially among individuals with underlying illnesses. The pandemic of the COVID-19 impaired the mental, psychological, and physical well-being of people admitted to hospitals. Furthermore, in underdeveloped countries, scarcity of medical equipment was a challenge to manage cases in public health facilities. Thus, understanding the epidemiology and clinical outcomes of COVID-19 patients who are receiving treatment is critical for developing effective treatments and assessing service quality. Therefore, this study is aimed at assessing the treatment outcomes and associated factors among patients affected by the COVID-19 virus. METHOD: We used an institutional-based retrospective cross-sectional analysis of 398 patients discharged in South Central, Ethiopia, between June 1, 2020, and July 5, 2021. Data were extracted using the data abstraction format. Data were entered, coded, and analyzed using the STATA 16 software. Bivariate and multivariate logistic regression analysis was used to assess the factors associated with poor treatment outcomes. A 95% confidence interval with adjusted odds ratio (AOR) and p value less than 0.05 were considered statistically significant. RESULT: In our study, the proportion of poor treatment outcomes was 61 (15.3%). Chronic pulmonary disease (AOR = 5.62; 95% CI: 2.49-12.70), asthma (AOR = 2.8; 95% CI: 1.17-6.67), chronic kidney disease (AOR = 4.81; 95% CI: 1.27-18.22),diabetic mellitus (AOR = 2.27; 95% CI: 1.02-5.09), HIV positive (AOR = 10.44; 95% CI: 3.0-36.35), worsening conditions (AOR = 3.73, 95% CI: 1.17-11.95), and age 55 and above years (AOR = 4.35, 95% CI: 1.30-14.60) were statistically associated with poor treatment outcomes. CONCLUSION: We found a significant number of patients had favourable treatment. Moreover, aging, having complicated situations at admission, and chronic illnesses such as COPD, CKD, asthma, diabetic mellitus, and HIV/AIDS participants were significantly associated with poor treatment outcomes. Therefore, critical follow-up and management of patients with underlying diseases and worsening health conditions during admission is required.


Subject(s)
COVID-19/therapy , SARS-CoV-2/physiology , Adolescent , Adult , Age Factors , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Chronic Disease/epidemiology , Cross-Sectional Studies , Ethiopia/epidemiology , Female , Hospitalization , Humans , Infant , Male , Middle Aged , Retrospective Studies , Risk Factors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...