Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50.692
Filter
1.
Braz. j. biol ; 83: e242603, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355852

ABSTRACT

Abstract Transcription factors (TF) are a wide class of genes in plants, and these can regulate the expression of other genes in response to various environmental stresses (biotic and abiotic). In the current study, transcription factor activity in sugarcane was examined during cold stress. Initially, RNA transcript reads of two sugarcane cultivars (ROC22 and GT08-1108) under cold stress were downloaded from SRA NCBI database. The reads were aligned into a reference genome and the differential expression analyses were performed with the R/Bioconductor edgeR package. Based on our analyses in the ROC22 cultivar, 963 TF genes were significantly upregulated under cold stress among a total of 5649 upregulated genes, while 293 TF genes were downregulated among a total of 3,289 downregulated genes. In the GT08-1108 cultivar, 974 TF genes were identified among 5,649 upregulated genes and 283 TF genes were found among 3,289 downregulated genes. Most transcription factors were annotated with GO categories related to protein binding, transcription factor binding, DNA-sequence-specific binding, transcription factor complex, transcription factor activity in RNA polymerase II, the activity of nucleic acid binding transcription factor, transcription corepressor activity, sequence-specific regulatory region, the activity of transcription factor of RNA polymerase II, transcription factor cofactor activity, transcription factor activity from plastid promoter, transcription factor activity from RNA polymerase I promoter, polymerase II and RNA polymerase III. The findings of above results will help to identify differentially expressed transcription factors during cold stress. It also provides a comprehensive analysis of the regulation of the transcription activity of many genes. Therefore, this study provides the molecular basis for improving cold tolerance in sugarcane and other economically important grasses.


Resumo Fatores de transcrição (FT) são uma ampla classe de genes em plantas e podem regular a expressão de outros genes em resposta a vários estresses ambientais (estresses bióticos e abióticos). No presente estudo, a atividade do fator de transcrição na cana-de-açúcar foi examinada durante o estresse pelo frio. Inicialmente, as leituras de transcrição de RNA de duas cultivares de cana-de-açúcar (ROC22 e GT08-1108) sob estresse frio foram baixadas do banco de dados SRA NCBI. As leituras foram alinhadas em um genoma de referência e as análises de expressão diferencial foram realizadas com o pacote R / Bioconductor edgeR. Com base em nossas análises no cultivar ROC22, 963 genes TF foram significativamente regulados positivamente sob estresse pelo frio entre um total de 5.649 genes regulados positivamente, enquanto 293 genes TF foram regulados negativamente entre um total de 3.289 genes regulados negativamente. No cultivar GT08-1108, 974 genes TF foram identificados entre 5.649 genes regulados positivamente e 283 genes TF foram encontrados entre 3.289 genes regulados negativamente. Os fatores de transcrição, em sua maioria, foram anotados com categorias GO relacionadas à ligação de proteína, ligação de fator de transcrição, ligação específica de sequência de DNA, complexo de fator de transcrição, atividade de fator de transcrição em RNA polimerase II, atividade de fator de transcrição de ligação de ácido nucleico, atividade de corepressor de transcrição, sequência específica da região reguladora, atividade do fator de transcrição da RNA polimerase II, atividade do cofator do fator de transcrição, atividade do fator de transcrição do promotor do plastídio, atividade do fator de transcrição do promotor da RNA polimerase I, polimerase II e RNA polimerase III. As descobertas dos resultados acima ajudarão a identificar fatores de transcrição expressos diferencialmente durante o estresse pelo frio. Ele também fornece uma análise abrangente da regulação da atividade de transcrição de muitos genes. Portanto, este estudo fornece base molecular para melhorar a tolerância ao frio em cana-de-açúcar e outras gramíneas economicamente importantes.


Subject(s)
Saccharum/genetics , Saccharum/metabolism , Cold-Shock Response/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cold Temperature , Gene Expression Regulation, Plant , Gene Expression Profiling
2.
Food Chem ; 400: 133996, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36055140

ABSTRACT

24-Epibrassinolide (EBR) may act as a modulator for chilling injury in peach fruit during cold storage. In this study, we screened a EBR-induced GATA-type zinc finger protein PpGATA12. The objective of this study was to investigate the potential roles of EBR treatment and transcriptional regulation of PpGATA12 in regulating chilling resistance of peaches. In the current study, we found that EBR treatment promoted the activities and transcriptions of energy and sucrose metabolism-related enzymes, maintained higher ATP content and energy status, improved the accumulation of sucrose and hexose. Furthermore, molecular biology assays suggested that PpGATA12 up-regulated transcriptions of sucrose metabolism-related genes including PpSS and PpNI, and energy metabolism-related genes including PpCCO, PpSDH and PpH+-ATPase. These results provided a new insight that the enhancement of chilling resistance in peach fruit by EBR treatment might be closely related to the regulatory role of PpGATA12 on sucrose and energy metabolisms.


Subject(s)
Prunus persica , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Brassinosteroids , Cold Temperature , Energy Metabolism , Fruit/genetics , Fruit/metabolism , Prunus persica/genetics , Prunus persica/metabolism , Steroids, Heterocyclic , Sucrose/metabolism
3.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142652

ABSTRACT

Improving chilling tolerance at the seedling stage in rice is essential for agricultural research. We combined a physiological analysis with transcriptomics in a variety Dular subjected to chilling followed by recovery at normal temperature to better understand the chilling tolerance mechanisms of rice. Chilling inhibited the synthesis of chlorophyll and non-structural carbohydrate (NSC) and disrupted the ion balance of the plant, resulting in the impaired function of rice leaves. The recovery treatment can effectively reverse the chilling-related injury. Transcriptome results displayed that 21,970 genes were identified at three different temperatures, and 11,732 genes were differentially expressed. According to KEGG analysis, functional categories for differentially expressed genes (DEGs) mainly included ribosome (8.72%), photosynthesis-antenna proteins (7.38%), phenylpropanoid biosynthesis (11.41%), and linoleic acid metabolism (10.07%). The subcellular localization demonstrated that most proteins were located in the chloroplasts (29.30%), cytosol (10.19%), and nucleus (10.19%). We proposed that some genes involved in photosynthesis, ribosome, phenylpropanoid biosynthesis, and linoleic acid metabolism may play key roles in enhancing rice adaptation to chilling stress and their recovery capacity. These findings provide a foundation for future research into rice chilling tolerance mechanisms.


Subject(s)
Oryza , Carbohydrates , Chlorophyll/metabolism , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant , Linoleic Acid/metabolism , Oryza/metabolism , Transcriptome
4.
J Strength Cond Res ; 36(10): 2883-2890, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36135034

ABSTRACT

ABSTRACT: Qu, C, Wu, Z, Xu, M, Lorenzo, S, Dong, Y, Wang, Z, Qin, F, and Zhao, J. Cryotherapy on subjective sleep quality, muscle, and inflammatory response in Chinese middle- and long-distance runners after muscle damage. J Strength Cond Res 36(10): 2883-2890, 2022-The purpose of this investigation was to explore the effects of cold-water immersion (CWI), contrast-water therapy (CWT), and whole-body cryotherapy (CRY) on subjective sleep quality, muscle damage markers, and inflammatory markers in middle- and long-distance runners after muscle damage. Twelve male runners from Beijing Sport University completed a muscle damage exercise protocol and were treated with different recovery methods (CWI, CWT, CRY, or control [CON]) immediately after exercise and at 24-, 48-, and 72-h postexercise. The Pittsburgh Sleep Quality Index questionnaire score, lactate dehydrogenase (LDH) activity, myoglobin (Mb) activity, interleukin-6 (IL-6) activity, and soluble intercellular adhesion molecule-1 (sICAM-1) activity were measured at 7 time points (preexercise; immediately postexercise; and at 1-, 24-, 48-, 72-, and 96-h postexercise). Pittsburgh Sleep Quality Index scores indicated that the CRY condition had improved sleep quality compared with the CON and CWI conditions (p < 0.05). In terms of LDH activity, the CRY and CWT conditions had improved recovery compared with the CON and CWI conditions (p < 0.05). In terms of Mb activity, the CRY condition exhibited improved recovery compared with that of the CON and CWI conditions (p < 0.05), and the CWT condition showed better recovery than that of the CON condition (p < 0.05). In terms of IL-6 activity, the CRY condition showed improved recovery compared with the CWI condition (p < 0.05). Finally, in terms of sICAM-1 activity, the CRY condition had enhanced recovery compared with the other 3 conditions (p < 0.05). The results from this study suggest that CRY improves subjective sleep quality and reduces muscle damage and inflammatory responses in middle- and long-distance runners. In addition, CWT reduced muscle damage and inflammatory responses, but its effects on the other parameters were inconclusive.


Subject(s)
Intercellular Adhesion Molecule-1 , Interleukin-6 , China , Cold Temperature , Cryotherapy/methods , Humans , Immersion , Lactate Dehydrogenases , Male , Muscle, Skeletal/physiology , Myoglobin , Sleep Quality , Water
5.
BMC Genomics ; 23(1): 670, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36162976

ABSTRACT

BACKGROUND: Abiotic stresses have increasingly serious effects on the growth and yield of crops. Cold stress, in particular, is an increasing problem. In this study, Fragaria daltoniana and F. vesca were determined to be cold-resistant and cold-sensitive species, respectively. Integrated transcriptomics and metabolomics methods were used to analyze the regulatory mechanism of abscisic acid (ABA) in F. daltoniana and F. vesca in their response to low temperature stress. RESULTS: F. daltoniana and F. vesca increased their ABA content under low temperature stress by upregulating the expression of the ABA biosynthetic pathway gene NCED and downregulating the expression of the ABA degradative gene CYP707A. Both types of regulation increased the accumulation of glucose and fructose, resulting in a reduction of damage under low temperature stress. Twelve transcription factors were found to be involved in the ABA regulatory pathway. The strong cold tolerance of F. daltoniana could be owing to its higher levels of ABA that accumulated compared with those in F. vesca under low temperature stress. In addition, the gene ABF2, which is related to the transduction of glucose signaling, was significantly upregulated in the leaves of F. daltoniana, while it was downregulated in the leaves of F. vesca under low temperature stress. This could contribute to the higher levels of glucose signal transduction in F. daltoniana. Thus, this could explain the higher peroxidase activity and lower damage to cell membranes in the leaves of F. daltoniana compared with F. vesca under low temperature stress, which endows the former with stronger cold tolerance. CONCLUSIONS: Under low temperature stress, the differences in the accumulation of ABA and the expression trends of ABF2 and ABF4 in different species of wild strawberries may be the primary reason for their differences in cold tolerance. Our results provide an important empirical reference and technical support for breeding resistant cultivated strawberry plants.


Subject(s)
Abscisic Acid , Fragaria , Abscisic Acid/metabolism , Cold Temperature , Cold-Shock Response , Fragaria/genetics , Fragaria/metabolism , Fructose , Gene Expression Regulation, Plant , Glucose/metabolism , Peroxidases/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism
6.
Molecules ; 27(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36144621

ABSTRACT

More than 70% of our planet is covered by extremely cold environments, nourishing a broad diversity of microbial life. Temperature is the most significant parameter that plays a key role in the distribution of microorganisms on our planet. Psychrophilic microorganisms are the most prominent inhabitants of the cold ecosystems, and they possess potential cold-active enzymes with diverse uses in the research and commercial sectors. Psychrophiles are modified to nurture, replicate, and retain their active metabolic activities in low temperatures. Their enzymes possess characteristics of maximal activity at low to adequate temperatures; this feature makes them more appealing and attractive in biotechnology. The high enzymatic activity of psychrozymes at low temperatures implies an important feature for energy saving. These enzymes have proven more advantageous than their mesophilic and thermophilic counterparts. Therefore, it is very important to explore the efficiency and utility of different psychrozymes in food processing, pharmaceuticals, brewing, bioremediation, and molecular biology. In this review, we focused on the properties of cold-active enzymes and their diverse uses in different industries and research areas. This review will provide insight into the areas and characteristics to be improved in cold-active enzymes so that potential and desired enzymes can be made available for commercial purposes.


Subject(s)
Cold Temperature , Ecosystem , Biotechnology , Enzymes/metabolism , Pharmaceutical Preparations
7.
Int J Circumpolar Health ; 81(1): 2111789, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36137565

ABSTRACT

This review is based on a multiple database survey on published literature to determine the effects on health following voluntary exposure to cold-water immersion (CWI) in humans. After a filtering process 104 studies were regarded relevant. Many studies demonstrated significant effects of CWI on various physiological and biochemical parameters. Although some studies were based on established winter swimmers, many were performed on subjects with no previous winter swimming experience or in subjects not involving cold-water swimming, for example, CWI as a post-exercise treatment. Clear conclusions from most studies were hampered by the fact that they were carried out in small groups, often of one gender and with differences in exposure temperature and salt composition of the water. CWI seems to reduce and/or transform body adipose tissue, as well as reduce insulin resistance and improve insulin sensitivity. This may have a protective effect against cardiovascular, obesity and other metabolic diseases and could have prophylactic health effects. Whether winter swimmers as a group are naturally healthier is unclear. Some of the studies indicate that voluntary exposure to cold water has some beneficial health effects. However, without further conclusive studies, the topic will continue to be a subject of debate.


Subject(s)
Cold Temperature , Water , Exercise/physiology , Humans
8.
Article in English | MEDLINE | ID: mdl-36141908

ABSTRACT

Previous studies have shown that vertical greening has a significant cooling and energy-saving effect, most of which are applied to opaque walls. However, windows are the critical factor contributing to the indoor thermal environment. This study developed a modular vertical greening shading device (MVGSD), and introduces its detailed structure: water supply mode, plant selection, and substrate preparation. To investigate the thermal performance of MVGSD, a structural model test was carried out. The results show that MVGSD has a noticeable effect on indoor temperature. Specifically, the greatest indoor temperature can be reduced by 4 °C and effectively low the concentration of CO2 (The CO2 absorption rate is 53.1%). In addition, the characteristics of the louver shading and MVGSD were compared, and it was found that the indoor temperature by using MVGSD is 2.6 °C lower than the louver. It is also worth mentioning that indoor humidity is improved by MVGSD, which has a beneficial effect on the thermal comfort of human beings.


Subject(s)
Carbon Dioxide , Cold Temperature , Humans , Humidity , Seasons , Temperature
9.
PLoS One ; 17(9): e0274184, 2022.
Article in English | MEDLINE | ID: mdl-36155652

ABSTRACT

The increased sensitivity of pigs to ambient temperature is due to today's intensive farming. Frequent climate disasters increase the pressure on healthy pig farming. Min pigs are an indigenous pig breed in China with desirable cold resistance characteristics, and hence are ideal for obtaining cold-resistant pig breeds. Therefore, it is important to discover the molecular mechanisms that are activated in response to cold stress in the Min pig. Here, we conducted a transcriptomic analysis of the skeletal muscle of Min pigs under chronic low-temperature acclimation (group A) and acute short cold stress (group B). Cold exposure caused more genes to be upregulated. Totals of 125 and 96 differentially expressed genes (DEGs) were generated from groups A and B. Sixteen common upregulated DEGs were screened; these were concentrated in oxidative stress (SRXN1, MAFF), immune and inflammatory responses (ITPKC, AREG, MMP25, FOSL1), the nervous system (RETREG1, GADD45A, RCAN1), lipid metabolism (LRP11, LIPG, ITGA5, AMPD2), solute transport (SLC19A2, SLC28A1, SLCO4A1), and fertility (HBEGF). There were 102 and 73 genes that were specifically differentially expressed in groups A and B, respectively. The altered mRNAs were enriched in immune, endocrine, and cancer pathways. There were 186 and 91 differentially expressed lncRNAs generated from groups A and B. Analysis of the target genes suggested that they may be involved in regulating the MAPK signaling pathway for resistance to cold. The results of this study provide a comprehensive overview of cold exposure-induced transcriptional patterns in skeletal muscle of the Min pig. These results can guide future molecular studies of cold stress response in pigs for improving cold tolerance as a goal in breeding programs.


Subject(s)
Cold-Shock Response , RNA, Long Noncoding , Animals , Cold Temperature , Cold-Shock Response/genetics , Gene Expression Profiling , Muscle, Skeletal/metabolism , RNA, Long Noncoding/metabolism , Swine , Transcriptome
10.
Plant Physiol Biochem ; 190: 47-61, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36099808

ABSTRACT

In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.


Subject(s)
Acclimatization , Cold-Shock Response , Acclimatization/physiology , Cold Temperature , Crop Production , Hormones
11.
Eur J Endocrinol ; 187(1): 171-183, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-36149276

ABSTRACT

Objectives: Brown adipose tissue (BAT) is important in the maintenance of cardiometabolic health in rodents. Recent reports appear to suggest the same in humans, although if this is true remains elusive partly because of the methodological bias that affected previous research. This cross-sectional work reports the relationships of cold-induced BAT volume, activity (peak standardized uptake, SUVpeak), and mean radiodensity (an inverse proxy of the triacylglycerols content) with the cardiometabolic and inflammatory profile of 131 young adults, and how these relationships are influenced by sex and body weight. Design: This is a cross-sectional study. Methods: Subjects underwent personalized cold exposure for 2 h to activate BAT, followed by static 18F-fluorodeoxyglucose PET-CT scanning to determine BAT variables. Information on cardiometabolic risk (CMR) and inflammatory markers was gathered, and a CMR score and fatty liver index (FLI) were calculated. Results: In men, BAT volume was positively related to homocysteine and liver damage markers concentrations (independently of BMI and seasonality) and the FLI (all P ≤ 0.05). In men, BAT mean radiodensity was negatively related to the glucose and insulin concentrations, alanine aminotransferase activity, insulin resistance, total cholesterol/HDL-C, LDL-C/HDL-C, the CMR score, and the FLI (all P ≤ 0.02). In women, it was only negatively related to the FLI (P < 0.001). These associations were driven by the results for the overweight and obese subjects. No relationship was seen between BAT and inflammatory markers (P > 0.05). Conclusions: A larger BAT volume and a lower BAT mean radiodensity are related to a higher CMR, especially in young men, which may support that BAT acts as a compensatory organ in states of metabolic disruption.


Subject(s)
Cardiovascular Diseases , Insulins , Adipose Tissue, Brown/diagnostic imaging , Adipose Tissue, Brown/metabolism , Alanine Transaminase , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cholesterol, LDL , Cold Temperature , Cross-Sectional Studies , Female , Fluorodeoxyglucose F18 , Glucose/metabolism , Homocysteine/metabolism , Humans , Insulins/metabolism , Male , Positron Emission Tomography Computed Tomography/methods , Triglycerides/metabolism , Young Adult
12.
World J Microbiol Biotechnol ; 38(12): 217, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36070019

ABSTRACT

Cold-adapted esterases have potential industrial applications. To fulfil the global continuous demand for these enzymes, a cold-adapted esterase member of family VI from Lysinibacillus sp. YS11 was cloned on pET-28b (+) vector and expressed in E. coli BL21(DE3) Rosetta cells for the first time. The open reading frame (654 bp: GenBank MT120818.1) encodes a polypeptide (designated EstRag: 217 amino acid residues). EstRag amino acid sequence has conserved esterase signature motifs: pentapeptide (GFSQG) and catalytic triad Ser110-Asp163-His194. EstRag 3D predicted model, built with LOMETS3 program, showed closest structural similarity to PDB 1AUO_A (esterase: Pseudomonas fluorescens); TM-align score program inferences. Purified EstRag to 9.28-fold, using Ni2+affinity agarose matrix, showed a single protein band (25 kDa) on SDS-PAGE, Km (0.031 mM) and Kcat/Km (657.7 s-1 mM-1) on p-NP-C2. Temperature and pH optima of EstRag were 35 °C and 8.0, respectively. EstRag was fully stable at 5-30 °C for 120 min and at pH(s) 8.0-10.0 after 24 h. EstRag activity (391.46 ± 0.009%) was impressively enhanced after 30 min preincubation with 5 mM Cu2+. EstRag retained full stability after 30 min pre-incubation with 0.1%(v/v) SDS, Triton X-100, and Tween-80. EstRag promising characteristics motivate performing guided evolution and industrial applications prospective studies.


Subject(s)
Bacillaceae , Esterases , Alkalies , Bacillaceae/genetics , Bacillaceae/metabolism , Cold Temperature , Detergents/chemistry , Detergents/pharmacology , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Esterases/metabolism , Prospective Studies
13.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077286

ABSTRACT

Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fabaceae , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cold Temperature , Fabaceae/genetics , Fabaceae/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism
14.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077443

ABSTRACT

Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop's resistance to chilling stress and other abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs, other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming.


Subject(s)
Lycopersicon esculentum , Acclimatization , Amino Acids , Cold Temperature , Epigenesis, Genetic , Gene Expression Regulation, Plant , Indenes , Lycopersicon esculentum/genetics , Lycopersicon esculentum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36077504

ABSTRACT

Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.


Subject(s)
Hypothermia, Induced , Hypothermia , Reperfusion Injury , Cold Temperature , Humans , Hypoxia
16.
Sensors (Basel) ; 22(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080980

ABSTRACT

With increasing urbanization, the application of Internet of things (IoT) technology to city governance has become a trend in architecture, transportation, and healthcare management, making IoT applicable in various domains. This study used IoT to inspect green construction and adopted a front-end sensing system, middle-end wireless transmission, and a back-end multifunctional system structure with cloud management. It integrated civil and electrical engineering to develop environmental monitoring technology and proposed a management information system for the implementation of green engineering. This study collected physical "measurements" of the greening environment on a campus. Ambient temperature and humidity were analyzed to explore the greening and energy-saving benefits of a green roof, a pervious road, and a photovoltaic roof. When the ambient temperature was below 25 °C, the solar panels had an insulation effect on the roof of the building during both 4:00-5:00 and 12:00-13:00, with an optimal insulation effect of 2.45 °C. When the ambient temperature was above 25 °C, the panels had a cooling effect on the roof of the building, whether during 4:00-5:00 or 12:00-13:00, with an optimal cooling effect of 5.77 °C. During the lower temperature period (4:00-5:00), the ecological terrace had an insulation effect on the space beneath, with an effect of approximately 1-3 °C and a mean insulation of 1.95 °C. During the higher temperature period (12:00-13:00), it presented a cooling effect on the space beneath, with an effect of approximately 0.5-9 °C and a mean cooling temperature of 5.16 °C. The cooling effect of the three greening areas on air and ground temperature decreased in the following order: pervious road > photovoltaic roof > ecological terrace.


Subject(s)
Cold Temperature , Environmental Monitoring , Cities , Humidity , Temperature
17.
An Acad Bras Cienc ; 94(4): e20201510, 2022.
Article in English | MEDLINE | ID: mdl-36102388

ABSTRACT

The present study analyzes the time-dependent thermal behavior of a retrofitted wine refrigerator cabinet operated by a caloric system emulator. The presence of a full load of wine bottles enabled the assessment of the thermal stratification inside the cabinet. Further experimental tests have been performed to quantify the overall thermal conductance of the cabinet walls and the thermal conductance of the glass door. A detailed mathematical model was developed to predict the temperature pull down in the refrigerated compartment, considering the interaction between the cabinet air and the wine bottles. In addition to the air and bottle temperatures, a good agreement (lower than 15% relative error) was observed for the cooling capacity. The numerical simulations revealed that the cabinet door was responsible for approximately 60% of the thermal load (even though it corresponded to approximately 20% of the cabinet external area).


Subject(s)
Wine , Cold Temperature , Models, Theoretical , Temperature
18.
Neurosci Lett ; 788: 136863, 2022 09 25.
Article in English | MEDLINE | ID: mdl-36067900

ABSTRACT

Transient receptor potential (TRP) channels are involved in the development of oxaliplatin-induced neuropathic pain, a frequent and debilitating side effect of cancer therapy. Here we explored whether oxaliplatin-induced changes in the expression of TRP channels, as well as the development of pain-related behaviours, differed between male and female animals. Adult rats were injected with oxaliplatin or saline and mechanical and cold allodynia were evaluated using Von Frey and Choi Tests. The mRNA levels of TRPV1, TRPM8 and TRPA1 were assessed in lumbar ganglia and spinal cord by using real time RT-PCR. Oxaliplatin administration induced mechanical and cold hypersensitivity and allodynia in both sexes, with more severe responses to cold stimulation detected in females. Oxaliplatin also induced a significant increase in the expression of TRPV1, TRPM8 and TRPA1 in lumbar dorsal root ganglia. Interestingly, while TRPV1 and TRPA1 upregulation showed no sex difference, the increase in TRPM8 mRNA levels was more pronounced in female ganglia, correlating with the increased sensitivity to innocuous cold stimuli observed in females. TRPV1 and TRPM8 were also found to be upregulated in the spinal cord of animals of both sexes. Our results reveal previously undescribed changes in the expression of TRP channels occurring in peripheral ganglia and spinal cord of both male and female oxaliplatin-treated animals, with some of these changes exhibiting sex-related differences that could underlie the development of sex-specific patterns of pain-related behaviours.


Subject(s)
Neuralgia , TRPM Cation Channels , Transient Receptor Potential Channels , Animals , Cold Temperature , Cryopyrin-Associated Periodic Syndromes , Female , Ganglia, Spinal/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Male , Neuralgia/metabolism , Organoplatinum Compounds/adverse effects , Organoplatinum Compounds/metabolism , Oxaliplatin/adverse effects , RNA, Messenger/metabolism , Rats , TRPA1 Cation Channel/metabolism , TRPM Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism
19.
Lakartidningen ; 1192022 09 14.
Article in Swedish | MEDLINE | ID: mdl-36106737

ABSTRACT

Migraine is characterized by recurrent episodes of severe headache and has been ranked as the second most disabling medical condition in the world. In frequent or chronic migraine, preventive treatment is recommended; pharmacological, non-pharmacological or a combination of both. Aerobic exercise is an evidence-based alternative to non-pharmacological treatment of migraines and can decrease the number of migraine attacks, intensity, and duration of headaches, as well as increase quality of life. Exercise at a moderate to high intensity level, 3 times a week, 30 minutes, excluding warm up and cool down, is recommended.


Subject(s)
Migraine Disorders , Quality of Life , Cold Temperature , Exercise , Headache/therapy , Humans , Migraine Disorders/therapy
20.
Sci Rep ; 12(1): 15553, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114408

ABSTRACT

The high-altitude alpine regions are characterized by highly variable and harsh environmental conditions. However, relatively little is known about the diverse mechanisms adopted by alpine plants to adapt to these stressful conditions. Here, we studied variation in transcriptome and physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an evergreen shrub of Himalaya. The samples were collected at 12 different time-points, from August until snowfall in November 2017, and then from June to September 2018. It was observed that with a drop in both ambient air temperature and photoperiod towards onset of winter, the freezing resistance of plants increased, resulting in 'cold acclimation'. Further, 'de-acclimation' was associated with a decrease in freezing resistance and increase in photosynthetic efficiency of leaves during spring. A considerable amount of variation was observed in the transcriptome in a time-dependent sequential manner, with a total of 9,881 differentially expressed genes. Based on gene expression profiles, the time-points could be segregated into four clusters directly correlating with the distinct phases of acclimation: non-acclimation (22-August-2017, 14-August-2018, 31-August-2018), early cold acclimation (12-September-2017, 29-September-2017), late cold acclimation (11-October-2017, 23-October-2017, 04-November-2017, 18-September-2018) and de-acclimation (15-June-2018, 28-June-2018, 14-July-2018). Cold acclimation was a gradual process, as indicated by presence of an intermediate stage (early acclimation). However, the plants can by-pass this stage when sudden decrease in temperature is encountered. The maximum variation in expression levels of genes occurred during the transition to de-acclimation, hence was 'transcriptionally' the most active phase. The similar or higher expression levels of genes during de-acclimation in comparison to non-acclimation suggested that molecular functionality is re-initiated after passing through the harsh winter conditions.


Subject(s)
Altitude , Cold Temperature , Acclimatization/genetics , Gene Expression Profiling , RNA-Seq
SELECTION OF CITATIONS
SEARCH DETAIL
...