Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.568
Filter
1.
PLoS One ; 17(5): e0267908, 2022.
Article in English | MEDLINE | ID: mdl-35511912

ABSTRACT

With the development of cloud computing, interest in database outsourcing has recently increased. In cloud computing, it is necessary to protect the sensitive information of data owners and authorized users. For this, data mining techniques over encrypted data have been studied to protect the original database, user queries and data access patterns. The typical data mining technique is kNN classification which is widely used for data analysis and artificial intelligence. However, existing works do not provide a sufficient level of efficiency for a large amount of encrypted data. To solve this problem, in this paper, we propose a privacy-preserving parallel kNN classification algorithm. To reduce the computation cost for encryption, we propose an improved secure protocol by using an encrypted random value pool. To reduce the query processing time, we not only design a parallel algorithm, but also adopt a garbled circuit. In addition, the security analysis of the proposed algorithm is performed to prove its data protection, query protection, and access pattern protection. Through our performance evaluation, the proposed algorithm shows about 2∼25 times better performance compared with existing algorithms.


Subject(s)
Cloud Computing , Privacy , Algorithms , Artificial Intelligence , Computer Security
2.
Sci Rep ; 12(1): 8493, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35595820

ABSTRACT

Protocol security in a composition protocol environment has always been an open problem in the field of formal analysis and verification of security protocols. As a well-known tool to analyze and verify the logical consistency of concurrent systems, SPIN (Simple Promela Interpreter) has been widely used in the analysis and verification of the security of a single protocol. There is no special research on the verification of protocol security in a composition protocol environment. To solve this problem, firstly, a formal analysis method for composition protocol based on SPIN is proposed, and a formal description of protocol operation semantics is given. Then the attacker model is formalized, and a message specification method based on field detection and component recognition is presented to alleviate the state explosion problem. Finally, the NSB protocol and the NSL protocol are used as examples for compositional analysis. It is demonstrated that the proposed method can effectively verify the security of the protocol in a composition protocol environment and enhance the efficiency of composition protocol verification.


Subject(s)
Computer Security , Logic , Semantics
3.
Comput Intell Neurosci ; 2022: 2254411, 2022.
Article in English | MEDLINE | ID: mdl-35528363

ABSTRACT

Adding the adequate level of security of information systems dealing with sensitive data, privacy, or defense systems involves some form of access control. The audits performed are dealing with the determination of the allowed activities of the legal users, when attempting to access resources of the system. Usually, full access is provided after the user has been successfully authenticated through an authentication mechanism (e.g., password), while the corresponding authorization control is based on the confidentiality level of the respective resources and the authorization level assigned to each user. A very important diversification occurring in modern digital technologies is related to the identification based on blockchain technology, which is presented as a public, distributed data series, unable to modify its history and grouped in time-numbered blocks. In this work, a blockchain-based verifiable user data access control policy for secured cloud data storage is suggested for a version associated with big data in health care. It is an innovative system of applying classified access policies to secure resources in the cloud, which operates based on blockchain technology. System evaluation is carried out by studying a case in its resilience to Eclipse attack under different malicious user capabilities for routing table poisoning.


Subject(s)
Blockchain , Cloud Computing , Computer Security , Information Storage and Retrieval , Policy
4.
Comput Intell Neurosci ; 2022: 1509000, 2022.
Article in English | MEDLINE | ID: mdl-35535188

ABSTRACT

In light of the continuous development of Internet technology, many problems involving network security based on the blockchain have also been observed gradually. In this paper, the existence forms of network security hazards based on the blockchain are explored to establish a network blockchain security sharing model based on fuzzy logic. In security sharing, network blockchains are often maintained by many parties. This poses new potential threats and challenges to privacy protection in these multiparty network blockchains. This paper proposes a research scheme for a network blockchain security sharing model based on fuzzy logic. The tampering of the protected network blockchain is prevented by blockchain, and the fuzzy logic algorithm is used to ensure its confidentiality. This solution allows the exchange in the protected network blockchain and the security of transaction information based on the fuzzy logic algorithm. According to the results of the experiments, this method can ensure security sharing of the network blockchain with high practicality and achieve the expected design effect.


Subject(s)
Blockchain , Computer Security , Confidentiality , Fuzzy Logic , Privacy
5.
Comput Intell Neurosci ; 2022: 3406228, 2022.
Article in English | MEDLINE | ID: mdl-35535195

ABSTRACT

To ensure the security of data transmission and recording in Internet environment monitoring systems, this paper proposes a study of a secure method of blockchain data transfer based on homomorphic encryption. Blockchain data transmission is realized through homomorphic encryption. Homomorphic encryption can not only encrypt the original data, but also ensure that the data result after decrypting the data is the same as the original data. The asymmetric encrypted public key is collected by Internet of things (IoT) equipment to realize the design of blockchain data secure transmission method based on homomorphic encryption. The experimental results show that the accuracy of the first transmission is as high as 88% when using the transmission method in this paper. After several experiments, the transmission accuracy is high by using the design method in this paper. In the last test, the transmission accuracy is still 88%, and the data transmission effect is relatively stable. At the same time, compared to the management method used in this article, the transfer method used in this paper is more reliable than the original transfer method and is not prone to data distortion. It can be seen that this method has high transmission accuracy and short transmission time, which effectively avoids the data tampering caused by too long time in the transmission process.


Subject(s)
Blockchain , Computer Security
6.
JMIR Mhealth Uhealth ; 10(5): e33735, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35522465

ABSTRACT

BACKGROUND: Women's mobile health (mHealth) is a growing phenomenon in the mobile app global market. An increasing number of women worldwide use apps geared to female audiences (female technology). Given the often private and sensitive nature of the data collected by such apps, an ethical assessment from the perspective of data privacy, sharing, and security policies is warranted. OBJECTIVE: The purpose of this scoping review and content analysis was to assess the privacy policies, data sharing, and security policies of women's mHealth apps on the current international market (the App Store on the Apple operating system [iOS] and Google Play on the Android system). METHODS: We reviewed the 23 most popular women's mHealth apps on the market by focusing on publicly available apps on the App Store and Google Play. The 23 downloaded apps were assessed manually by 2 independent reviewers against a variety of user data privacy, data sharing, and security assessment criteria. RESULTS: All 23 apps collected personal health-related data. All apps allowed behavioral tracking, and 61% (14/23) of the apps allowed location tracking. Of the 23 apps, only 16 (70%) displayed a privacy policy, 12 (52%) requested consent from users, and 1 (4%) had a pseudoconsent. In addition, 13% (3/23) of the apps collected data before obtaining consent. Most apps (20/23, 87%) shared user data with third parties, and data sharing information could not be obtained for the 13% (3/23) remaining apps. Of the 23 apps, only 13 (57%) provided users with information on data security. CONCLUSIONS: Many of the most popular women's mHealth apps on the market have poor data privacy, sharing, and security standards. Although regulations exist, such as the European Union General Data Protection Regulation, current practices do not follow them. The failure of the assessed women's mHealth apps to meet basic data privacy, sharing, and security standards is not ethically or legally acceptable.


Subject(s)
Mobile Applications , Telemedicine , Computer Security , Female , Humans , Information Dissemination , Policy , Privacy
7.
Sci Rep ; 12(1): 7667, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538203

ABSTRACT

Benefiting from the development of the Internet and smart devices, it is now convenient to transmit images anywhere and anytime, which poses a new challenge for image security. The Visual Cryptography Scheme (VCS) is a secret sharing method for protecting an image without a key, the merit of VCS is the human visual system (HVS) can restore the secret image by simply superimposing qualified shares, without any computation. To eliminate noise-like shares in traditional VCS, this paper presents a novel QR code-based expansion-free and meaningful visual cryptography scheme (QEVCS), which generates visually appealing QR codes for transmitting meaningful shares. When distributing on public networks, this scheme does not attract the attention of potential attackers. By limiting the gray-level of a halftoned image, QEVCS both keep the computation-free of visual cryptography and the size of recovery image same as the secret images. The experimental results show the effectiveness of QEVCS when preserving the privacy of images.


Subject(s)
Algorithms , Computer Security , Humans , Internet , Privacy , Research Design
8.
Comput Intell Neurosci ; 2022: 8431874, 2022.
Article in English | MEDLINE | ID: mdl-35602625

ABSTRACT

In cloud and edge computing, senders of data often want to be anonymous, while recipients of data always expect that the data come from a reliable sender and they are not redundant. Linkable ring signature (LRS) can not only protect the anonymity of the signer, but also detect whether two different signatures are signed by the same signer. Today, most lattice-based LRS schemes only satisfy computational anonymity. To the best of our knowledge, only the lattice-based LRS scheme proposed by Torres et al. can achieve unconditional anonymity. But the efficiency of signature generation and verification of the scheme is very low, and the signature length is also relatively long. With the preimage sampling, trapdoor generation, and rejection sampling algorithms, this study proposed an efficient LRS scheme with unconditional anonymity based on the e-NTRU problem under the random oracle model. We implemented our scheme and Torres et al.'s scheme, as well as other four efficient lattice-based LRS schemes. It is shown that under the same security level, compared with Torres et al.'s scheme, the signature generation time, signature verification time, and signature size of our scheme are reduced by about 94.52%, 97.18%, and 58.03%, respectively.


Subject(s)
Algorithms , Computer Security
9.
Comput Intell Neurosci ; 2022: 7016554, 2022.
Article in English | MEDLINE | ID: mdl-35510050

ABSTRACT

Nowadays, one of the most popular applications is cloud computing for storing data and information through World Wide Web. Since cloud computing has become available, users are rapidly increasing. Cloud computing enables users to obtain a better and more effective application at a lower cost in a more satisfactory way. Health services data must therefore be kept as safe and secure as possible because the release of this data could have serious consequences for patients. A framework for security and privacy must be employed to store and manage extremely sensitive data. Patients' confidential health records have been encrypted and saved in the cloud using cypher text so far. To ensure privacy and security in a cloud computing environment is a big issue. The medical system has been designed as a standard, access of records, and effective use by medical practitioners as required. In this paper, we propose a novel algorithm along with implementation details as an effective and secure E-health cloud model using identity-based cryptography. The comparison of the proposed and existing techniques has been carried out in terms of time taken for encryption and decryption, energy, and power. Decryption time has been decreased up to 50% with the proposed method of cryptography. As it will take less time for decryption, less power is consumed for doing the cryptography operations.


Subject(s)
Computer Security , Telemedicine , Algorithms , Cloud Computing , Humans , Research Design
10.
Comput Intell Neurosci ; 2022: 6173185, 2022.
Article in English | MEDLINE | ID: mdl-35510052

ABSTRACT

The Internet of Things has become the third wave of the information industry and cloud computing, big data, and Internet technologies. Among the many identification technologies used in the Internet of Things, radiofrequency identification technology is undoubtedly one of the most popular methods today. It is replacing the traditional contact IC card and becoming a new trend of smart cards. At the same time, a large amount of data is generated in the IoT environment. A lot of data involve user privacy, and users do not have good control over these data. Collecting and utilizing these data on the basis of protecting user privacy have become an important problem to be solved urgently. With the implementation of the strategy of rejuvenating the country through science and education, major colleges and universities are developing rapidly through enrollment and expansion, which also brings inconvenience to campus security management. Although the traditional campus all-in-one card system can guarantee the security identity of people entering and leaving, it does not reasonably integrate and utilize this information, resulting in waste of information resources and, to a certain extent, the problem of user privacy leakage. To solve the above problems, a new system was developed to integrate resources to identify users. To protect the privacy data of Internet of Things users, a specific solution using blockchain technology is proposed; for the identity authentication problem of Internet of Things users, the identity authentication based on the public key address of the blockchain is used on the chain, and the group signature is used off the chain. The identity authentication method solves the contradiction between anonymity and traceability in blockchain application scenarios. The simulation results show that the system not only considers user privacy but also has extremely important practical significance for the promotion of Internet of Things and RF applications.


Subject(s)
Blockchain , Internet of Things , Algorithms , Computer Security , Humans , Internet , Privacy
11.
Sensors (Basel) ; 22(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408275

ABSTRACT

The Internet of Things (IoT) is promising to transform a wide range of fields. However, the open nature of IoT makes it exposed to cybersecurity threats, among which identity spoofing is a typical example. Physical layer authentication, which identifies IoT devices based on the physical layer characteristics of signals, serves as an effective way to counteract identity spoofing. In this paper, we propose a deep learning-based framework for the open-set authentication of IoT devices. Specifically, additive angular margin softmax (AAMSoftmax) was utilized to enhance the discriminability of learned features and a modified OpenMAX classifier was employed to adaptively identify authorized devices and distinguish unauthorized ones. The experimental results for both simulated data and real ADS-B (Automatic Dependent Surveillance-Broadcast) data indicate that our framework achieved superior performance compared to current approaches, especially when the number of devices used for training is limited.


Subject(s)
Internet of Things , Computer Security
12.
Sensors (Basel) ; 22(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408371

ABSTRACT

Next Generation cellular networks are expected to offer better service quality, secure and reliable service provisioning, and more cooperative operation even in unexpected stressful situations. Service provider cooperation can facilitate reliable service provisioning and extended coverage in disasters situations or partial network failures. However, the current 4G and 5G standards do not offer security and privacy-friendly support for inter-operator agility and service mobility, a key enabler for such cooperation. The situation becomes more critical in presence of attackers, where establishing trust relationships becomes very complicated. This paper presents a novel UAV-assisted user-agility support framework that enables trustworthy seamless service migration in a zero-trust environment. The proposed framework facilitates temporal authentication-authority delegation and proxying to enable preservice, all-party mutual authentication. The framework is implemented and tested on top of the srsRAN open-source 4G/5G software stack. Experiments showed that the presented framework managed to facilitate effective and efficient trustworthy service migration between heterogeneous service provider networks.


Subject(s)
Computer Security , Privacy , Software
13.
Sensors (Basel) ; 22(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35408377

ABSTRACT

The enforcement of the GDPR in May 2018 has led to a paradigm shift in data protection. Organizations face significant challenges, such as demonstrating compliance (or auditability) and automated compliance verification due to the complex and dynamic nature of consent, as well as the scale at which compliance verification must be performed. Furthermore, the GDPR's promotion of data protection by design and industrial interoperability requirements has created new technical challenges, as they require significant changes in the design and implementation of systems that handle personal data. We present a scalable data protection by design tool for automated compliance verification and auditability based on informed consent that is modeled with a knowledge graph. Automated compliance verification is made possible by implementing a regulation-to-code process that translates GDPR regulations into well-defined technical and organizational measures and, ultimately, software code. We demonstrate the effectiveness of the tool in the insurance and smart cities domains. We highlight ways in which our tool can be adapted to other domains.


Subject(s)
Computer Security , Informed Consent , Software
14.
Sensors (Basel) ; 22(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408406

ABSTRACT

Augmented Reality (AR) and cyber-security technologies have existed for several decades, but their growth and progress in recent years have increased exponentially. The areas of application for these technologies are clearly heterogeneous, most especially in purchase and sales, production, tourism, education, as well as social interaction (games, entertainment, communication). Essentially, these technologies are recognized worldwide as some of the pillars of the new industrial revolution envisaged by the industry 4.0 international program, and are some of the leading technologies of the 21st century. The ability to provide users with required information about processes or procedures directly into the virtual environment is archetypally the fundamental factor in considering AR as an effective tool for different fields. However, the advancement in ICT has also brought about a variety of cybersecurity challenges, with a depth of evidence anticipating policy, architectural, design, and technical solutions in this very domain. The specific applications of AR and cybersecurity technologies have been described in detail in a variety of papers, which demonstrate their potential in diverse fields. In the context of smart cities, however, there is a dearth of sources describing their varied uses. Notably, a scholarly paper that consolidates research on AR and cybersecurity application in this context is markedly lacking. Therefore, this systematic review was designed to identify, describe, and synthesize research findings on the application of AR and cybersecurity for smart cities. The review study involves filtering information of their application in this setting from three key databases to answer the predefined research question. The keynote part of this paper provides an in-depth review of some of the most recent AR and cybersecurity applications for smart cities, emphasizing potential benefits, limitations, as well as open issues which could represent new challenges for the future. The main finding that we found is that there are five main categories of these applications for smart cities, which can be classified according to the main articles, such as tourism, monitoring, system management, education, and mobility. Compared with the general literature on smart cities, tourism, monitoring, and maintenance AR applications appear to attract more scholarly attention.


Subject(s)
Augmented Reality , Cities , Communication , Computer Security
15.
Sensors (Basel) ; 22(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408413

ABSTRACT

Software products from all vendors have vulnerabilities that can cause a security concern. Malware is used as a prime exploitation tool to exploit these vulnerabilities. Machine learning (ML) methods are efficient in detecting malware and are state-of-art. The effectiveness of ML models can be augmented by reducing false negatives and false positives. In this paper, the performance of bagging and boosting machine learning models is enhanced by reducing misclassification. Shapley values of features are a true representation of the amount of contribution of features and help detect top features for any prediction by the ML model. Shapley values are transformed to probability scale to correlate with a prediction value of ML model and to detect top features for any prediction by a trained ML model. The trend of top features derived from false negative and false positive predictions by a trained ML model can be used for making inductive rules. In this work, the best performing ML model in bagging and boosting is determined by the accuracy and confusion matrix on three malware datasets from three different periods. The best performing ML model is used to make effective inductive rules using waterfall plots based on the probability scale of features. This work helps improve cyber security scenarios by effective detection of false-negative zero-day malware.


Subject(s)
Algorithms , Machine Learning , Computer Security , Data Collection , Software
16.
PLoS One ; 17(4): e0266462, 2022.
Article in English | MEDLINE | ID: mdl-35404955

ABSTRACT

Blockchain technology (BCT) has emerged in the last decade and added a lot of interest in the healthcare sector. The purpose of this systematic literature review (SLR) is to explore the potential paradigm shift in healthcare utilizing BCT. The study is compiled by reviewing research articles published in nine well-reputed venues such as IEEE Xplore, ACM Digital Library, Springs Link, Scopus, Taylor & Francis, Science Direct, PsycINFO, Ovid Medline, and MDPI between January 2016 to August 2021. A total of 1,192 research studies were identified out of which 51 articles were selected based on inclusion criteria for this SLR that presents the modern information on the recent implications and gaps in the use of BCT for enhancing the healthcare procedures. According to the outcomes, BCT is being applied to design the novel and advanced interventions to enrich the current protocol of managing, distributing, and processing clinical records and personal medical information. BCT is enduring the conceptual development in the healthcare domain, where it has summed up the substantial elements through better and enhanced efficiency, technological innovation, access control, data privacy, and security. A framework is developed to address the probable field where future researchers can add considerable value, such as data protection, system architecture, and regulatory compliance. Finally, this SLR concludes that the upcoming research can support the pervasive implementation of BCT to address the critical dilemmas related to health diagnostics, enhancing the patient healthcare process in remote monitoring or emergencies, data integrity, and avoiding fraud.


Subject(s)
Blockchain , Computer Security , Delivery of Health Care , Health Facilities , Humans , Technology
17.
Hautarzt ; 73(5): 391-397, 2022 May.
Article in German | MEDLINE | ID: mdl-35471235

ABSTRACT

Digital health applications represent a new form of care. The basis for the approval of digital health applications is the Digital Healthcare Act. In order to be included in the directory, the digital health applications must undergo an extensive evaluation process by the Federal Institute for Drugs and Medical Devices. The focus is on proving added value for care, but also on the technical aspects. This strictly differentiates the digital health applications from the health apps. Cutting-edge apps enable a simple output of collected data to make doctor-patient interactions efficient. Appropriate remuneration and education could increase the acceptance by the medical profession and thus accelerate implementation; however, such instruments and incentives are not currently provided for in the system.


Subject(s)
Mobile Applications , Computer Security , Delivery of Health Care , Humans
18.
Comput Intell Neurosci ; 2022: 3045107, 2022.
Article in English | MEDLINE | ID: mdl-35463293

ABSTRACT

The health system in today's real world is significant but difficult and overcrowded. These hurdles can be diminished using improved health record management and blockchain technology. These technologies can handle medical data to provide security by monitoring and maintaining patient records. The processing of medical data and patient records is essential to analyze the earlier prescribed medicines and to understand the severity of diseases. Blockchain technology can improve the security, performance, and transparency of sharing the medical records of the current healthcare system. This paper proposed a novel framework for personal health record (PHR) management using IBM cloud data lake and blockchain platform for an effective healthcare management process. The problem in the blockchain-based healthcare management system can be minimized with the utilization of the proposed technique. Significantly, the traditional blockchain system usually decreases the latency. Therefore, the proposed technique focuses on improving latency and throughput. The result of the proposed system is calculated based on various matrices, such as F1 Score, Recall, and Confusion matrices. Therefore, the proposed work scored high accuracy and provided better results than existing techniques.


Subject(s)
Blockchain , Cloud Computing , Health Records, Personal , Computer Security , Humans
19.
JMIR Public Health Surveill ; 8(4): e32411, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35377316

ABSTRACT

BACKGROUND: COVID-19 is an ongoing global pandemic caused by SARS-CoV-2. As of June 2021, 5 emergency vaccines were available for COVID-19 prevention, and with the improvement of vaccination rates and the resumption of activities in each country, verification of vaccination has become an important issue. Currently, in most areas, vaccination and reverse transcription polymerase chain reaction (RT-PCR) test results are certified and validated on paper. This leads to the problem of counterfeit documents. Therefore, a global vaccination record is needed. OBJECTIVE: The main objective of this study is to design a vaccine passport (VP) validation system based on a general blockchain architecture for international use in a simulated environment. With decentralized characteristics, the system is expected to have the advantages of low cost, high interoperability, effectiveness, security, and verifiability through blockchain architecture. METHODS: The blockchain decentralized mechanism was used to build an open and anticounterfeiting information platform for VPs. The contents of a vaccination card are recorded according to international Fast Healthcare Interoperability Resource (FHIR) standards, and blockchain smart contracts (SCs) are used for authorization and authentication to achieve hierarchical management of various international hospitals and people receiving injections. The blockchain stores an encrypted vaccination path managed by the user who manages the private key. The blockchain uses the proof-of-authority (PoA) public chain and can access all information through the specified chain. This will achieve the goal of keeping development costs low and streamlining vaccine transit management so that countries in different economies can use them. RESULTS: The openness of the blockchain helps to create transparency and data accuracy. This blockchain architecture contains a total of 3 entities. All approvals are published on Open Ledger. Smart certificates enable authorization and authentication, and encryption and decryption mechanisms guarantee data protection. This proof of concept demonstrates the design of blockchain architecture, which can achieve accurate global VP verification at an affordable price. In this study, an actual VP case was established and demonstrated. An open blockchain, an individually approved certification mechanism, and an international standard vaccination record were introduced. CONCLUSIONS: Blockchain architecture can be used to build a viable international VP authentication process with the advantages of low cost, high interoperability, effectiveness, security, and verifiability.


Subject(s)
Blockchain , COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Computer Security , Humans , SARS-CoV-2
20.
Sensors (Basel) ; 22(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408219

ABSTRACT

Security has always been the main concern for the internet of things (IoT)-based systems. Blockchain, with its decentralized and distributed design, prevents the risks of the existing centralized methodologies. Conventional security and privacy architectures are inapplicable in the spectrum of IoT due to its resource constraints. To overcome this problem, this paper presents a Blockchain-based security mechanism that enables secure authorized access to smart city resources. The presented mechanism comprises the ACE (Authentication and Authorization for Constrained Environments) framework-based authorization Blockchain and the OSCAR (Object Security Architecture for the Internet of Things) object security model. The Blockchain lays out a flexible and trustless authorization mechanism, while OSCAR makes use of a public ledger to structure multicast groups for authorized clients. Moreover, a meteor-based application is developed to provide a user-friendly interface for heterogeneous technologies belonging to the smart city. The users would be able to interact with and control their smart city resources such as traffic lights, smart electric meters, surveillance cameras, etc., through this application. To evaluate the performance and feasibility of the proposed mechanism, the authorization Blockchain is implemented on top of the Ethereum network. The authentication mechanism is developed in the node.js server and a smart city is simulated with the help of Raspberry Pi B+. Furthermore, mocha and chai frameworks are used to assess the performance of the system. Experimental results reveal that the authentication response time is less than 100 ms even if the average hand-shaking time increases with the number of clients.


Subject(s)
Blockchain , Internet of Things , Cities , Computer Security , Humans , Trust
SELECTION OF CITATIONS
SEARCH DETAIL
...