Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.626.974
Filter
1.
Cell Mol Biol Lett ; 27(1): 31, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35346026

ABSTRACT

BACKGROUND: Circular RNA (circRNA) has been shown to play an important role in a variety of cardiovascular diseases, including myocardial infarction (MI). However, the role of circRbms1 in MI progression remains unclear. METHODS: An MI mouse model was constructed in vivo, and cardiomyocytes were cultured under hypoxia condition to induce a cardiomyocyte injury model in vitro. The expression levels of circRbms1, microRNA (miR)-742-3p, and forkhead box O1 (FOXO1) were determined by quantitative real-time PCR. Cell viability, migration, invasion, and apoptosis were measured using Cell Counting Kit-8 assay, transwell assay, and flow cytometry. Meanwhile, western blot analysis was used to examine the protein levels of apoptosis markers and FOXO1. Additionally, dual-luciferase reporter assay, RNA pull-down assay, and RIP assay were employed to verify the interactions between miR-742-3p and circRbms1 or FOXO1. RESULTS: CircRbms1 was upregulated in the heart tissues of MI mice and hypoxia-induced cardiomyocytes. Hypoxia induced cardiomyocyte injury by suppressing cell viability, migration, and invasion, and promoting apoptosis. Function experiments showed that circRbms1 overexpression aggravated hypoxia-induced cardiomyocyte injury, while its silencing relieved cardiomyocyte injury induced by hypoxia. Furthermore, circRbms1 sponged miR-742-3p. MiR-742-3p overexpression alleviated hypoxia-induced cardiomyocyte injury, and its inhibitor reversed the suppressive effect of circRbms1 silencing on hypoxia-induced cardiomyocyte injury. Further experiments showed that FOXO1 was a target of miR-742-3p, and its expression was positively regulated by circRbms1. The inhibitory effect of miR-742-3p on hypoxia-induced cardiomyocyte injury was reversed by FOXO1 overexpression. CONCLUSION: CircRbms1 regulated the miR-742-3p/FOXO1 axis to mediate hypoxia-induced cardiomyocyte injury, suggesting that circRbms1 might be an effective target for MI treatment.


Subject(s)
MicroRNAs , Myocytes, Cardiac , Animals , Apoptosis/genetics , Cell Hypoxia/genetics , Forkhead Box Protein O1/genetics , Hypoxia/genetics , Hypoxia/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism
2.
Int J Mol Med ; 49(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-35137921

ABSTRACT

The aim of the present study was to elucidate the effect of resveratrol on non­alcoholic steatohepatitis (NASH), and the molecular basis in mice and Hepa1­6 cells, in order to verify its therapeutic effect. C57BL/6J mice were fed a methionine­choline­deficient (MCD) diet to induce steatohepatitis and were treated with resveratrol. Mouse sera were collected for biochemical analysis and enzyme­linked immunosorbent assay, and livers were obtained for histological observation, and mmu­microRNA (miR)­599 and inflammation­related gene expression analysis. Hepa1­6 cells were treated with palmitic acid to establish a NASH cell model, and were then treated with resveratrol, or transfected with mmu­miR­599 mimic, mmu­miR­599 inhibitor or recombinant pregnane X receptor (PXR) plasmid. Subsequently, the cells were collected for mmu­miR­599 and inflammation­related gene expression analysis. Reverse transcription­quantitative polymerase chain reaction and western blotting were used to assess mmu­miR­599 expression levels, and the mRNA and protein expression levels of PXR and inflammation­related genes. The binding site of mmu­miR­599 in the PXR mRNA was verified by the luciferase activity assay. Mice fed an MCD diet for 4 weeks exhibited steatosis, focal necrosis and inflammatory infiltration in the liver. Resveratrol significantly reduced serum aminotransferase and malondialdehyde levels, and ameliorated hepatic injury. These effects were associated with reduced mmu­miR­599 expression, enhanced PXR expression, and downregulated levels of nuclear factor­κB, tumour necrosis factor­α, interleukin (IL)­1ß, IL­6, NOD­like receptor family pyrin domain­containing protein 3 and signal transducer and activator of transcription 3. Administration of the mmu­miR­599 mimic inhibited PXR expression in Hepa1­6 cells, whereas the mmu­miR­599 inhibitor exerted the opposite effect. A binding site for mmu­miR­599 was identified in the PXR mRNA sequence. Furthermore, overexpression of PXR inhibited the expression of inflammatory factors in Hepa1­6 cells. The present study provided evidence for the protective role of resveratrol in ameliorating steatohepatitis through regulating the mmu­miR­599/PXR pathway and the consequent suppression of related inflammatory factors. Resveratrol may serve as a potential candidate for steatohepatitis management.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , Animals , Liver/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Pregnane X Receptor/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use
3.
Cell Biol Int ; 46(4): 548-553, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34957648

ABSTRACT

Wegener's granulomatosis (WG) is a form of systemic vasculitis characterized by granulomatous inflammation of the upper and lower airways, vasculitis, and necrotizing glomerulonephritis. It is strongly associated with anti-neutrophil cytoplasmic antibodies against proteinase 3 (PR3-ANCAs). Various in vitro observations provided strong evidence that autoimmune PR3-ANCAs are directly involved in glomerular and vascular inflammation. However, little is known about the pathogenic significance of PR3-ANCAs in vivo. Therefore, the generation of animal models helped to validate the suggested autoimmune origin and pathophysiology in WG. To characterize and improve the models, numerous studies were carried out to elucidate the effect of mouse/rat PR3-ANCAs on neutrophil function as well as the role of CD4/CD8 in T and B cells and antibodies in the pathogenesis of the disease. Understanding the pathogenesis is therefore critical to relate these models to human studies hoping that they will be useful for better insight of WG and the development of specific therapies for the disease.


Subject(s)
Granulomatosis with Polyangiitis , Animals , Antibodies, Antineutrophil Cytoplasmic , Mice , Myeloblastin , Neutrophils , Rats
4.
Diagn Cytopathol ; 50(3): 112-122, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34984861

ABSTRACT

BACKGROUND: Adipocytic tumors are the most common soft tissue tumors, with lipomas and atypical lipomatous tumor/well-differentiated liposarcomas (ALT/WDL), which comprise most cases. Preoperative differential diagnosis of lipoma or ALT/WDL can provide important information for decisions regarding treatment. We evaluated the cytological findings of 20 cases of lipoma and ALT/WDL. METHODS: Fluorescence in situ hybridization (FISH) was performed on formalin-fixed paraffin-embedded specimens (FFPE) to examine mouse double minute 2 homolog (MDM2) amplification in all cases. Tissue samples were collected from the center of the surgical materials, stained with Pap, and evaluated for 12 cytological parameters by six cytotechnologists. RESULTS: The findings regarding large atypical cells, multinucleated cells, and nuclear pleomorphism were highly concordant among the cytotechnologists and were associated with MDM2 amplification. Large atypical cells, considered a highly specific feature of ALT/WDL, were not observed in lipoma cases. However, the sensitivity of the large atypical cell findings was not high (67%); therefore, comprehensive evaluation of multinucleated cells and pleomorphism is crucial for predicting ALT/WDL diagnosis. FISH of MDM2 on Pap-stained specimens was performed in four cases. In two, the results were similar to those of MDM2 FISH performed on FFPE sections and were reproducible, whereas in the other two, the signal could not be evaluated because of the strong background coloration. CONCLUSIONS: Cytology specimens may be useful for the preoperative diagnosis of adipocytic tumors, particularly if the FISH conditions for Pap-stained specimens and the detection accuracy of MDM2 amplification can be improved.


Subject(s)
Lipoma , Liposarcoma , Animals , Diagnosis, Differential , Humans , In Situ Hybridization, Fluorescence/methods , Lipoma/diagnosis , Lipoma/genetics , Lipoma/pathology , Liposarcoma/diagnosis , Liposarcoma/genetics , Liposarcoma/pathology , Mice , Proto-Oncogene Proteins c-mdm2/genetics
5.
Acta Histochem ; 124(2): 151856, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35077998

ABSTRACT

Neuroblastoma is a metastatic brain tumor particularly common in children. The cure rate is below 50% for patients of high-risk condition. Novel therapeutic agents and approaches are needed to improve the cure rate. Tumor necrosis factor-related and apoptosis-inducing ligand (TRAIL) is a promising proapoptotic factor that rapidly induces apoptosis preferentially in transformed and cancerous cells. Unfortunately, the common TRAIL resistance in cancers has hampered the clinical application of the ligand. Previously we prepared a novel TRAIL-armed ER derived nanosomal agent (ERN-T) that overcomes TRAIL resistance in some cancer lines when combined with a synthetic antagonist of inhibitors of apoptosis proteins (IAPs), AZD5582. However, how AZD5582 sensitizes cancer cells to ERN-T remains not well understood. In this study we continued to test the therapeutic efficacy of the combinatory therapy of ERN-T and AZD5582 on neuroblastoma, aiming to reveal the molecular mechanism underlying the synergism between AZD5582 and ERN-T. The obtained data revealed that ERN-Ts overcame TRAIL resistance and showed significant cytotoxicity on the resistant neuroblastoma line SH-SH5Y when combined with AZD5582 whilst sparing normal cells. The combination of low doses of ERN-Ts and AZD5582 induced intensive apoptosis in SH-SY5Y but not in normal skin fibroblasts (NSFs). Importantly we discovered that TRAIL sensitization in SH-SY5Y was associated with the concomitant downregulation of antiapoptotic factors cFLIP, MCL-1 and IAPs and upregulation of proapoptotic protein BAX and the death receptor 5 (DR5) by the cotreatment of ERN-T and AZD5582. In vivo study demonstrated that the combination of ERN-T and AZD5582 constituted a highly effective and safe therapy for subcutaneous SH-SY5Y xenograft neuroblastoma in nude mice. In conclusion, we identified that the concomitant regulation of both antiapoptotic and proapoptotic factors and DR5 is an essential molecular mechanism for overcoming TRAIL resistance in SH-SY5Y and the combination of ERN-T and AZD5582 potentially constitutes a novel therapeutic strategy, which is highly effective and safe for neuroblastoma.


Subject(s)
Neuroblastoma , TNF-Related Apoptosis-Inducing Ligand , Alkynes , Animals , Apoptosis , Cell Line, Tumor , Humans , Mice , Mice, Nude , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oligopeptides , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/therapeutic use
6.
Arch Pharm Res ; 45(3): 159-173, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35334088

ABSTRACT

Renal fibrosis is defined by excessive extracellular matrix (ECM) accumulation and is associated with a decreased kidney function. Increased inflammation and infiltration of inflammatory cells are the key features of renal fibrosis development; however, the mechanism of how inflammation starts is still un-known. Here, we show that the activation of epithelial Protease-activating receptor 2 (PAR2) signaling plays an important role in the initiation of inflammation via increased chemokine expression and inflammatory cell induction. In the adenine diet-induced renal fibrosis mouse model, PAR2 expression was significantly increased in the renal tubule region. Kidneys from PAR2-knockout mice were protected from adenine diet-induced renal fibrosis, kidney dysfunction, and inflammation. Using NRK52E kidney epithelial cells, we further elucidated the mechanisms underlying these processes. Activation of PAR2 signaling pathway by PAR2 agonist specifically increased the levels of chemokines, including MCP1 and MCP3, via the MAPK-NF-κB signaling pathway. Inhibition of the MAPK signaling pathway attenuated PAR2 agonist-induced NF-κB activation, chemokine expression, and macrophage cell induction. Furthermore, PAR2 activation directly increased mesenchymal cell markers in epithelial cells. Taken together, we found that increased PAR2 expression and the PAR2/MAPK signaling pathway promote renal fibrosis by increasing the inflammatory responses and promoting EMT process.


Subject(s)
Kidney Diseases , Peptide Hydrolases , Receptor, PAR-2 , Animals , Fibrosis , Kidney/pathology , Kidney Diseases/metabolism , Mice , Peptide Hydrolases/metabolism , Receptor, PAR-2/metabolism , Signal Transduction
7.
Clin Exp Allergy ; 52(1): 115-126, 2022 01.
Article in English | MEDLINE | ID: mdl-34431147

ABSTRACT

BACKGROUND: Genetic variants of dipeptidyl peptidase 10 (DPP10) have been suggested to contribute to the development of NSAID-exacerbated respiratory disease (NERD). However, the mechanisms of how DPP10 contributes to NERD phenotypes remain unclear. OBJECTIVE: To demonstrate the exact role of DPP10 in the pathogenesis of NERD. METHODS: Patients with NERD (n = 110), those with aspirin-tolerant asthma (ATA, n = 130) and healthy control subjects (HCs, n = 80) were enrolled. Clinical characteristics were analysed according to the serum DPP10 levels in both NERD and ATA groups. The function of DPP10 in airway inflammation and remodelling was investigated with in vitro, ex vivo and in vivo experiments. RESULTS: NERD patients had higher levels of serum DPP10 and TGF-ß1 with lower FEV1 than ATA patients or HCs (p < .05 for each). NERD patients with higher DPP10 levels had higher TGF-ß1, but lower FEV1 (p < .05 for all), whilst no differences were noted in ATA patients. Moreover, the seum DPP10 levels had a positive correlation with TGF-ß1 (r = 0.384, p < .001), but a negative correlation with FEV1 (r = -0.230, p = .016) in NERD patients. In in vitro studies, expression of DPP10 in airway epithelial cells was enhanced by TGF-ß1 treatments. Furthermore, DPP10 was found to be produced from immune cells and this molecule induced the ERK phosphorylation in airway epithelial cells, which was suppressed by anti-DPP10 treatment. In asthmatic mouse models, increased levels of DPP10 in the serum and TGF-ß1 in the bronchoalveolar lavage fluid were noted, which were suppressed by anti-DPP10 treatment. Moreover, anti-DPP10 treatment inhibited the ERK phosphorylation and extracellular matrix deposition in the lungs. CONCLUSIONS AND CLINICAL RELEVANCE: These findings suggest that increased production of DPP10 may contribute to TGF-ß1-mediated airway dysfunction in NERD patients, where blockade of DPP10 may have potential benefits.


Subject(s)
Asthma , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Respiratory Tract Diseases , Animals , Anti-Inflammatory Agents, Non-Steroidal , Asthma/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Humans , Lung/metabolism , Mice , Respiratory Tract Diseases/pathology , Transforming Growth Factor beta1
8.
Neuropeptides ; 92: 102224, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34998113

ABSTRACT

In female mammals, reproductive senescence is a complex process involving progressive ovarian dysfunction, associated with altered central control of the hypothalamic-pituitary-gonadal axis and desynchronization of the circadian system. The objective of this study was to investigate age-dependent changes in the daily regulation of Arg-Phe amide-related peptide-3 (RFRP-3), a hypothalamic peptide involved in reproduction, in female C57BL/6 J mice of different age groups (4, 13, and 19 months old) sampled at their diestrus stage. We found an age-dependent decrease in the total number of RFRP-3 neurons and in the relative number of activated (i.e. c-Fos-positive) RFRP-3 neurons. RFRP-3 neuronal activation exhibited a daily variation in young and middle-aged mice, which was abolished in 19-month-old mice. We also found a daily variation in the number of RFRP-3 neurons receiving close vasopressin (AVP)- and vasoactive intestinal peptide (VIP)-ergic fiber appositions in mice aged 4 and 13 months, but not in 19-month-old mice. However, we found no daily or age-dependent changes in the AVP and VIP fiber density in the dorsomedial hypothalamus. Plasma LH levels were similar in mice aged 4 and 13 months, but were markedly increased in 19-month-old mice. The present findings indicate that the number of RFRP-3 positive neurons is downregulated during old age and that the daily changes in their innervation by the circadian peptides AVP and VIP are abolished. This age-associated reduced (rhythmic) activity of the inhibitory RFRP-3 system could be implicated in the elevated LH secretion observed during reproductive senescence.


Subject(s)
Luteinizing Hormone , Neuropeptides , Animals , Female , Mammals , Mice , Mice, Inbred C57BL , Neurons , Neuropeptides/pharmacology , Vasoactive Intestinal Peptide
9.
Cell Tissue Res ; 387(2): 261-274, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34816282

ABSTRACT

Circadian rhythms are those variations in behavioral and molecular processes of organisms that follow roughly 24 h cycles in the absence of any external cue. The hypothalamic suprachiasmatic nucleus (SCN) harbors the principal brain pacemaker driving circadian rhythms. The epithalamic habenula (Hb) contains a self-sustained circadian clock functionally coupled to the SCN. Anatomically, the Hb projects to the midbrain dopamine (DA) and serotonin (5-HT) systems, and it receives inputs from the forebrain, midbrain, and brainstem. The SCN is set by internal signals such as 5-HT or melatonin from the raphe nuclei and pineal gland, respectively. However, how the Hb clock is set by internal cues is not well characterized. Hence, in the present study, we determined whether DA, noradrenaline (NA), 5-HT, and the neuropeptides orexin (ORX) and vasopressin influence the Hb circadian clock. Using PER2::Luciferase transgenic mice, we found that the amplitude of the PER2 protein circadian oscillations from Hb explants was strongly affected by DA and NA. Importantly, these effects were dose-and region (rostral vs. caudal) dependent for NA, with a main effect in the caudal part of the Hb. Furthermore, ORX also induced a significant change in the amplitude of PER2 protein oscillations in the caudal Hb. In conclusion, catecholaminergic (DA, NA) and ORXergic transmission impacts the clock properties of the Hb clock likely contributing to the circadian regulation of motivated behaviors. Accordingly, pathological conditions that lead in alterations of catecholamine or ORX activity (drug intake, compulsive feeding) might affect the Hb clock and conduct to circadian disturbances.


Subject(s)
Circadian Clocks , Habenula , Animals , Catecholamines/metabolism , Circadian Rhythm , Habenula/metabolism , Mice , Mice, Transgenic , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Suprachiasmatic Nucleus/metabolism
10.
Circ Res ; 130(7): 1038-1055, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35196865

ABSTRACT

BACKGROUND: The transcription factor BACH1 (BTB and CNC homology 1) suppressed endothelial cells (ECs) proliferation and migration and impaired angiogenesis in the ischemic hindlimbs of adult mice. However, the role and underlying mechanisms of BACH1 in atherosclerosis remain unclear. METHODS: Mouse models of atherosclerosis in endothelial cell (EC)-specific-Bach1 knockout mice were used to study the role of BACH1 in the regulation of atherogenesis and the underlying mechanisms. RESULTS: Genetic analyses revealed that coronary artery disease-associated risk variant rs2832227 was associated with BACH1 gene expression in carotid plaques from patients. BACH1 was upregulated in ECs of human and mouse atherosclerotic plaques. Endothelial Bach1 deficiency decreased turbulent blood flow- or western diet-induced atherosclerotic lesions, macrophage content in plaques, expression of endothelial adhesion molecules (ICAM1 [intercellular cell adhesion molecule-1] and VCAM1 [vascular cell adhesion molecule-1]), and reduced plasma TNF-α (tumor necrosis factor-α) and IL-1ß levels in atherosclerotic mice. BACH1 deletion or knockdown inhibited monocyte-endothelial adhesion and reduced oscillatory shear stress or TNF-α-mediated induction of endothelial adhesion molecules and/or proinflammatory cytokines in mouse ECs, human umbilical vein ECs, and human aortic ECs. Mechanistic studies showed that upon oscillatory shear stress or TNF-α stimulation, BACH1 and YAP (yes-associated protein) were induced and translocated into the nucleus in ECs. BACH1 upregulated YAP expression by binding to the YAP promoter. BACH1 formed a complex with YAP inducing the transcription of adhesion molecules. YAP overexpression in ECs counteracted the antiatherosclerotic effect mediated by Bach1-deletion in mice. Rosuvastatin inhibited BACH1 expression by upregulating microRNA let-7a in ECs, and decreased Bach1 expression in the vascular endothelium of hyperlipidemic mice. BACH1 was colocalized with YAP, and the expression of BACH1 was positively correlated with YAP and proinflammatory genes, as well as adhesion molecules in human atherosclerotic plaques. CONCLUSIONS: These data identify BACH1 as a mechanosensor of hemodynamic stress and reveal that the BACH1-YAP transcriptional network is essential to vascular inflammation and atherogenesis. BACH1 shows potential as a novel therapeutic target in atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology , Transcription Factors/metabolism
11.
Immunol Cell Biol ; 100(4): 267-284, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35201640

ABSTRACT

Toll-like receptor (TLR) signaling relies on Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor proteins that recruit downstream signaling molecules to generate tailored immune responses. In addition, the palmitoylated transmembrane adaptor protein family member Scimp acts as a non-TIR-containing adaptor protein in macrophages, scaffolding the Src family kinase Lyn to enable TLR phosphorylation and proinflammatory signaling responses. Here we report the existence of a smaller, naturally occurring translational variant of Scimp (Scimp TV1), which is generated through leaky scanning and translation at a downstream methionine. Scimp TV1 also scaffolds Lyn, but in contrast to full-length Scimp, it is basally rather than lipopolysaccharide (LPS)-inducibly phosphorylated. Macrophages from mice that selectively express Scimp TV1, but not full-length Scimp, have impaired sustained LPS-inducible cytokine responses. Furthermore, in granulocyte macrophage colony-stimulating factor-derived myeloid cells that express high levels of Scimp, selective overexpression of Scimp TV1 enhances CpG DNA-inducible cytokine production. Unlike full-length Scimp that localizes to the cell surface and filopodia, Scimp TV1 accumulates in intracellular compartments, particularly the Golgi. Moreover, this variant of Scimp is not inducibly phosphorylated in response to CpG DNA, suggesting that it may act via an indirect mechanism to enhance TLR9 responses. Our findings thus reveal the use of alternative translation start sites as a previously unrecognized mechanism for diversifying TLR responses in the innate immune system.


Subject(s)
Signal Transduction , Toll-Like Receptors , Animals , DNA/metabolism , Macrophages/metabolism , Mice , Toll-Like Receptors/metabolism , src-Family Kinases/metabolism
12.
MAbs ; 14(1): 2020203, 2022.
Article in English | MEDLINE | ID: mdl-35133949

ABSTRACT

Despite recent advances in transgenic animal models and display technologies, humanization of mouse sequences remains one of the main routes for therapeutic antibody development. Traditionally, humanization is manual, laborious, and requires expert knowledge. Although automation efforts are advancing, existing methods are either demonstrated on a small scale or are entirely proprietary. To predict the immunogenicity risk, the human-likeness of sequences can be evaluated using existing humanness scores, but these lack diversity, granularity or interpretability. Meanwhile, immune repertoire sequencing has generated rich antibody libraries such as the Observed Antibody Space (OAS) that offer augmented diversity not yet exploited for antibody engineering. Here we present BioPhi, an open-source platform featuring novel methods for humanization (Sapiens) and humanness evaluation (OASis). Sapiens is a deep learning humanization method trained on the OAS using language modeling. Based on an in silico humanization benchmark of 177 antibodies, Sapiens produced sequences at scale while achieving results comparable to that of human experts. OASis is a granular, interpretable and diverse humanness score based on 9-mer peptide search in the OAS. OASis separated human and non-human sequences with high accuracy, and correlated with clinical immunogenicity. BioPhi thus offers an antibody design interface with automated methods that capture the richness of natural antibody repertoires to produce therapeutics with desired properties and accelerate antibody discovery campaigns. The BioPhi platform is accessible at https://biophi.dichlab.org and https://github.com/Merck/BioPhi.


Subject(s)
Deep Learning , Animals , Antibodies , Mice
13.
Biol Pharm Bull ; 45(3): 360-363, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34937813

ABSTRACT

In this study, we investigated the effects of fosphenytoin (fPHT), a water-soluble prodrug of phenytoin, on the pain responses of a mouse herpes zoster (HZ) pain model. Transdermal herpes simplex virus type 1 (HSV-1) inoculation induced mechanical allodynia and hyperalgesia of the hind paw and spontaneous pain-like behaviors, such as licking the affected skin. Intravenous injection of fPHT (15 and 30 mg/kg) alleviated HSV-1-induced provoked pain (allodynia and hyperalgesia). The suppressive effects of fPHT on provoked pain were weaker than those of diclofenac and pregabalin which were used as positive controls. fPHT, diclofenac, and pregabalin significantly suppressed HSV-1-induced spontaneous pain-like behaviors. Among them, high-dose fPHT (30 mg/kg) showed the strongest suppression. Intravenous fPHT may become a viable option for an acute HZ pain, especially for spontaneous pain.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Animals , Herpes Simplex/drug therapy , Hyperalgesia/drug therapy , Mice , Pain/drug therapy , Phenytoin/analogs & derivatives , Phenytoin/pharmacology , Phenytoin/therapeutic use
14.
Biol Pharm Bull ; 45(3): 309-315, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34937830

ABSTRACT

Anti-angiogenic gene therapy is a promising strategy in treating cancer. Endostatin and angiostatin are widely used in tumor anti-angiogenesis therapy. Our previous studies have shown that the BDS-hEA, a baculovirus long-term expressing the fusion protein of human endostatin and angiostatin, has a favorable effect in inhibiting the growth and angiogenesis of hepatocellular carcinoma. The purpose of this study was to further investigate its synergistic antitumor efficiency in combination with low-dose chemotherapeutic gemcitabine (GEM) on the subcutaneous hepatocellular carcinoma xenograft model in nude mice. The results showed that the combined group significantly inhibited (p < 0.05 or p < 0.01 or p < 0.001) the growth of tumor weight and volume, reduced the expression of ki67 (cell proliferation marker), CD31 (angiogenic marker) and Matrix metalloproteinase 9 (MMP-9, tumor invasion and metastasis marker) and increased the apoptosis of tumor cells compared with the monotherapy and control groups, respectively. Synergistic index results showed that BDS-hEA combined with GEM had a synergistic effect in inhibiting tumor volume, proliferation, microvessel density, metastasis and promoting tumor apoptosis. Furthermore, there were no metastatic nodules and obvious pathological changes in liver tissue of the combined group, and the serum liver function indicators aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-BIL), alkaline phosphatase (ALP) and glutamyl transpeptidase (GGT) were significantly reduced (p < 0.05 or p < 0.01 or p < 0.001) in the BDS-hEA or GEM groups compared with the control group. Notably, the combined therapy showed lower levels of liver function indicators than the GEM group. These data support the view that the combination of BDS-hEA and GEM has a synergistic anti-tumor properties and can reduce the damage of liver to certain extent.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Angiogenesis Inhibitors/therapeutic use , Angiostatins/genetics , Angiostatins/therapeutic use , Animals , Baculoviridae , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Deoxycytidine/analogs & derivatives , Endostatins/genetics , Endostatins/therapeutic use , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mice , Mice, Nude
15.
Cell Biol Int ; 46(3): 475-487, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34939719

ABSTRACT

Mutations of PSEN1 have been reported in dilated cardiomyopathy pedigrees. Understanding the effects and mechanisms of PSEN1 in cardiomyocytes might have important implications for treatment of heart diseases. Here, we showed that PSEN1 was downregulated in ischemia-induced failing hearts. Functionally, cardiovascular specific PSEN1 deletion led to spontaneous death of the mice due to cardiomyopathy. At the age of 11 months, the ratio of the heart weight/body weight was slightly lower in the Sm22a-PSEN1-KO mice compared with that of the WT mice. Echocardiography showed that the percentage of ejection fraction and fractional shortening was significantly reduced in the Sm22a-PSEN1-KO group compared with the percent of these measures in the WT group, indicating that PSEN1-KO resulted in heart failure. The abnormally regulated genes resulted from PSEN1-KO were detected to be enriched in muscle development and dilated cardiomyopathy. Among them, several genes encode Ca2+ ion channels, promoting us to investigate the effects of PSEN1 KO on regulation of Ca2+ in isolated adult cardiomyocytes. Consistently, in isolated adult cardiomyocytes, PSEN1-KO increased the concentration of cytosolic Ca2+ and reduced Ca2+ concentration inside the sarcoplasmic reticulum (SR) lumen at the resting stage. Additionally, SR Ca2+ was decreased in the failing hearts of WT mice, but with the lowest levels observed in the failing hearts of PSEN1 knockout mice. These results indicate that the process of Ca2+ release from SR into cytoplasm was affected by PSEN1 KO. Therefore, the abnormalities in Ca2+ homeostasis resulted from downregulation of PSEN1 in failing hearts might contribute to aging-related cardiomyopathy, which might had important implications for the treatment of aging-related heart diseases.


Subject(s)
Calcium , Cardiomyopathy, Dilated , Animals , Cardiomyopathy, Dilated/genetics , Homeostasis , Mice , Mice, Knockout , Myocytes, Cardiac/physiology , Sarcoplasmic Reticulum
16.
Methods Mol Biol ; 2418: 41-51, 2022.
Article in English | MEDLINE | ID: mdl-35119658

ABSTRACT

Estrogen receptor α (ERα) conserves a phosphorylation motif at Serine 216. This site constitutes a protein kinase C phosphorylation motif located within the DNA binding domain (DBD) of ERα. The liver plays a critical role in the regulation of metabolism of various xenobiotics, fatty acids, and cholesterol or endogenous compounds. Moreover, numerous metabolizing enzymes are mainly expressed in the liver. In this chapter, we describe several practical experimental procedures confirming that mouse ERα is phosphorylated at serine 216 in livers upon phenobarbital (PB) treatment. Also, this phosphorylation regulates the expression of estrogen sulfotransferase gene (SULT1E1) which has an important role to sulfate and inactivate estrogen. In response to PB, the conserved motif within the DBD activates the Sult1e1 gene. When this motif was mutated, the activation of Sult1e1 was suppressed significantly. This chapter also describes the use of a phospho-peptide antibody (αP-S216) in the chromatin immunoprecipitation (ChIP) assay, and the co-immunoprecipitation (Co-IP) assay visualized by Western blot analysis.


Subject(s)
Estrogen Receptor alpha , Serine , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Immunoprecipitation , Liver/metabolism , Mice , Phosphorylation/physiology , Serine/metabolism
17.
Methods Mol Biol ; 2418: 53-61, 2022.
Article in English | MEDLINE | ID: mdl-35119659

ABSTRACT

The ability to silence the expression of gene products in a chemically, spatially, and temporally specific manner in the brains of animals has enabled key breakthroughs in the field of behavioral neuroscience. Using this technique, estrogen receptor alpha (ERα) has been specifically implicated in a multitude of behaviors in mice, including sexual, aggressive, locomotor, and maternal behaviors, in a variety of brain regions, including the medial preoptic area, ventromedial hypothalamus, and amygdala. In this chapter, we describe the techniques involved in the generation of the small hairpin RNAs (shRNAs) specifically designed to silence ERα, the construction of the adeno-associated viral (AAV) vector for delivery of the shRNA, the procedures to confirm the silencing of ERα (in vitro and in vivo) and in vivo delivery of the shRNAs to the brains of animals.


Subject(s)
Estrogen Receptor alpha , Rodentia , Animals , Brain/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Mice , Preoptic Area/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rodentia/genetics
18.
Methods Mol Biol ; 2418: 63-75, 2022.
Article in English | MEDLINE | ID: mdl-35119660

ABSTRACT

Serine 216 constitutes a protein kinase C phosphorylation motif located within the DNA binding domain of estrogen receptor α (ERα). In this chapter, we present experimental procedures confirming that mouse ERα is phosphorylated at serine 216 in peripheral blood neutrophils and in neutrophils that infiltrate the uterus, as well as the role of phosphoserine 216 in neutrophil migration. A phospho-peptide antibody (αP-S216) was utilized in Western blot, immunohistochemistry, and double immunofluorescence staining to detect this phosphorylation of an endogenous ERα. Both immunohistochemistry (with αP-S216 or neutrophil marker Ly6G antibody) and double immunofluorescence staining of mouse uterine sections prepared from C3H/HeNCrIBR females revealed that phosphorylated ERα was expressed in all infiltrating neutrophils during hormonal cycles but not in any other of the other uterine cells. Neutrophils infiltrate the uterus from the bloodstream. White blood cells (WBC) were prepared from peripheral blood of C3H/HeNCrIBR females or males and double immunostained. Blood neutrophils also expressed phosphorylated ERα but in only about 20% of cells in both sexes. Only the neutrophils expressing phosphorylated ERα spontaneously migrated in in vitro Transwell migration assays and infiltrated the uterus in mice.


Subject(s)
Estrogen Receptor alpha , Serine , Animals , Estrogen Receptor alpha/genetics , Female , Male , Mice , Mice, Inbred C3H , Neutrophils/metabolism , Phosphorylation , Serine/metabolism
19.
Methods Mol Biol ; 2418: 363-382, 2022.
Article in English | MEDLINE | ID: mdl-35119675

ABSTRACT

Manipulation of protein stability using small molecules has a great potential for both basic research and clinical therapy. Based on our protein knockdown technology, we developed chimeric degrader molecules SNIPER(ER)s that target the estrogen receptor alpha (ERα) for degradation via the ubiquitin-proteasome system. This chapter describes the design and synthesis of SNIPER(ER) compounds and methods for the evaluation of their activity in cellular systems and in a tumor xenograft model.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Animals , Cell Line, Tumor , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , Mice , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin/metabolism , Ubiquitination
20.
Transl Psychiatry ; 12(1): 77, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197453

ABSTRACT

Serotonergic psychedelic drugs, such as psilocin (4-hydroxy-N,N-dimethyltryptamine), profoundly alter the quality of consciousness through mechanisms which are incompletely understood. Growing evidence suggests that a single psychedelic experience can positively impact long-term psychological well-being, with relevance for the treatment of psychiatric disorders, including depression. A prominent factor associated with psychiatric disorders is disturbed sleep, and the sleep-wake cycle is implicated in the homeostatic regulation of neuronal activity and synaptic plasticity. However, it remains largely unknown to what extent psychedelic agents directly affect sleep, in terms of both acute arousal and homeostatic sleep regulation. Here, chronic electrophysiological recordings were obtained in mice to track sleep-wake architecture and cortical activity after psilocin injection. Administration of psilocin led to delayed REM sleep onset and reduced NREM sleep maintenance for up to approximately 3 h after dosing, and the acute EEG response was associated primarily with an enhanced oscillation around 4 Hz. No long-term changes in sleep-wake quantity were found. When combined with sleep deprivation, psilocin did not alter the dynamics of homeostatic sleep rebound during the subsequent recovery period, as reflected in both sleep amount and EEG slow-wave activity. However, psilocin decreased the recovery rate of sleep slow-wave activity following sleep deprivation in the local field potentials of electrodes targeting the medial prefrontal and surrounding cortex. It is concluded that psilocin affects both global vigilance state control and local sleep homeostasis, an effect which may be relevant for its antidepressant efficacy.


Subject(s)
Electroencephalography , Sleep , Animals , Brain/physiology , Humans , Mice , Psilocybin/analogs & derivatives , Sleep/physiology , Sleep Deprivation , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...