Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90.066
Filter
1.
Braz. j. biol ; 84: e253555, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355900

ABSTRACT

Abstract The aim of the present study is to assess the effects of selenium nanoparticles on the growth, hematology and nutrients digestibility of Labeorohita fingerlings. Fingerlings were fed with seven isocaloric sunflower meal-based diet supplemented with different concentrations of nanoparticles naming T1 to T7 (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg), with 5% wet body weight while chromic oxide was used as an indigestible marker. After experimentation for 90 days T3 treated group (1mg/kg -1Se-nano level) showed the best result in hematological parameters (WBC's 7.97 ×103mm-3, RBC's 2.98 ×106 mm-3 and Platelet count 67), nutrient digestibility (crude protein: 74%, ether extract: 76%, gross energy: 70%) and growth performance (weight gain 13.24 g, weight gain% 198, feed conversion ratio 1.5, survival rate 100%) as compared to the other treatment groups. Specific growth rates were found significantly higher in T5 than in other groups. The present study indicated positive effect of 1 mg/kg Se-nanoparticles on growth advancement, hematological parameters, and nutrients digestibility of L. rohita fingerlings.


Resumo O objetivo do presente estudo é avaliar os efeitos das nanopartículas de selênio no crescimento, hematologia e digestibilidade dos nutrientes de alevinos de Labeo rohita. Os alevinos foram alimentados com sete dietas isocalóricas à base de farinha de girassol suplementada com diferentes concentrações de nanopartículas, nomeando T1 a T7 (0, 0,5, 1, 1,5, 2, 2,5 e 3 mg / kg), com 5% do peso corporal úmido enquanto o óxido crômico foi usado como um marcador indigesto. Após a experimentação por 90 dias, o grupo tratado com T3 (nível 1mg / kg -1Se-nano) mostrou o melhor resultado em parâmetros hematológicos (WBC's 7,97 × 103mm-3, RBC's 2,98 × 106mm-3 e contagem de plaquetas 67), digestibilidade dos nutrientes (proteína bruta: 74%, extrato de éter: 76%, energia bruta: 70%) e desempenho de crescimento (ganho de peso 13,24 g, ganho de peso % 198, taxa de conversão alimentar 1,5, taxa de sobrevivência 100%) em comparação com os outros grupos de tratamento. As taxas de crescimento específicas foram encontradas significativamente mais altas em T5 do que em outros grupos. O presente estudo indicou efeito positivo de 1 mg / kg de nanopartículas de Se no avanço do crescimento, parâmetros hematológicos e digestibilidade de nutrientes de alevinos de L. rohita.


Subject(s)
Animals , Nanoparticles , Helianthus , Nutrients , Dietary Supplements , Diet , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
2.
Med Res Rev ; 42(2): 800-849, 2022 03.
Article in English | MEDLINE | ID: mdl-34693555

ABSTRACT

Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.


Subject(s)
Citric Acid , Nanoparticles , Drug Delivery Systems , Humans , Hydrogels , Polymers
3.
Small ; 18(10): e2105880, 2022 03.
Article in English | MEDLINE | ID: mdl-34989480

ABSTRACT

Glyconanoparticles (GNPs) made by self-assembly of carbohydrate-based polystyrene-block-ß-cyclodextrin copolymer are used as a building block for the design of nanostructured biomaterials of electrode. The firm immobilization of GNPs is carried out on electrochemically generated polymer, poly(pyrrole-adamantane), and copolymer, poly(pyrrole-adamantane)/poly(pyrrole-lactobionamide) via host-guest interactions between adamantane and ß-cyclodextrin. The ability of GNPs for the specific anchoring of biological macromolecules is investigated using glucose oxidase enzyme modified by adamantane groups as a protein model (GOx-Ad). The immobilization of GOx-Ad is carried out by incubation of an aqueous enzyme solution on a coating of GNPs adsorbed on a platinum electrode. The presence of immobilized GOx-Ad is evaluated in aqueous glucose solution by potentiostating the underlying platinum electrode at 0.7 V/SCE for the electro-oxidation of H2 O2 generated by the enzyme. The analytical performance of the bioelectrodes for the detection of glucose is compared to control electrodes prepared without GNPs or without electropolymerized films. The better permeability of copolymer compared to polymer and the possibility to elaborate two alternating layers of GNPs and GOx-Ad are clearly observed. The best amperometric response is recorded with a multilayered bioelectrode displaying a wide linear range linear range of the calibration curve: 68 µmol L-1 to 0.1 mol L-1 .


Subject(s)
Biosensing Techniques , Nanoparticles , beta-Cyclodextrins , Electrodes , Enzymes, Immobilized/chemistry , Glucose/chemistry , Glucose Oxidase/chemistry , Nanoparticles/chemistry , Pyrroles/chemistry , beta-Cyclodextrins/chemistry
4.
Nanotechnology ; 33(23)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35193121

ABSTRACT

We combined phosphoinositol-3-kinin inhibitor IPI-549 and photodynamic Chlorin e6 (Ce6) on carboxymethyl chitosan to develop a novel drug delivery nanoparticle (NP) system (Ce6/CMCS-DSP-IPI549) and evaluate its glutathione (GSH) sensitivity and targeting ability for breast cancer treatment. The NPs were spherical with a uniform size of 218.8 nm, a stable structure over 7 days. The maximum encapsulation efficiency was 64.42%, and NPs drug loading was 8.05%. The NPs released drugs within tumor cells due to their high GSH concentration, while they maintained structural integrity in normal cells, which have low GSH concentration. The cumulative release rates of IPI-549 and Ce6 at 108 h were 70.67% and 40.35% (at GSH 10 mM) and 8.11% and 2.71% (at GSH 2µM), respectively. The NPs showed a strong inhibitory effect on 4T1 cells yet did not affect human umbilical vein endothelial cells (HUVECs). After irradiation by a 660 nm infrared laser for 72 h, the survival rate of 4T1 cells was 15.51%. Cellular uptake studies indicated that the NPs could accurately release drugs into tumor cells. In addition, the NPs had a good photodynamic effect and promoted the release of reactive oxygen species to damage tumor cells. Overall, the combination therapy of IPI-549 and Ce6 is safe and effective, and may provide a new avenue for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Chlorophyllides , Nanoparticles , Photochemotherapy , Porphyrins , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Chlorophyllides/therapeutic use , Endothelial Cells/pathology , Female , Glutathione , Humans , Isoquinolines , Nanoparticles/chemistry , Photosensitizing Agents , Porphyrins/chemistry , Pyrazoles , Pyrimidines
5.
Cell Rep ; 40(5): 111160, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35921835

ABSTRACT

Although COVID-19 vaccines have been developed, multiple pathogenic coronavirus species exist, urging on development of multispecies coronavirus vaccines. Here we develop prototype lipid nanoparticle (LNP)-mRNA vaccine candidates against SARS-CoV-2 Delta, SARS-CoV, and MERS-CoV, and we test how multiplexing LNP-mRNAs can induce effective immune responses in animal models. Triplex and duplex LNP-mRNA vaccinations induce antigen-specific antibody responses against SARS-CoV-2, SARS-CoV, and MERS-CoV. Single-cell RNA sequencing profiles the global systemic immune repertoires and respective transcriptome signatures of vaccinated animals, revealing a systemic increase in activated B cells and differential gene expression across major adaptive immune cells. Sequential vaccination shows potent antibody responses against all three species, significantly stronger than simultaneous vaccination in mixture. These data demonstrate the feasibility, antibody responses, and single-cell immune profiles of multispecies coronavirus vaccination. The direct comparison between simultaneous and sequential vaccination offers insights into optimization of vaccination schedules to provide broad and potent antibody immunity against three major pathogenic coronavirus species.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Liposomes , Middle East Respiratory Syndrome Coronavirus/genetics , Nanoparticles , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
6.
J Nanobiotechnology ; 20(1): 362, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933341

ABSTRACT

Oral delivery of therapeutics is the preferred route of administration due to ease of administration which is associated with greater patient medication adherence. One major barrier to oral delivery and intestinal absorption is rapid clearance of the drug and the drug delivery system from the gastrointestinal (GI) tract. To address this issue, researchers have investigated using GI mucus to help maximize the pharmacokinetics of the therapeutic; while mucus can act as a barrier to effective oral delivery, it can also be used as an anchoring mechanism to improve intestinal residence. Nano-drug delivery systems that use materials which can interact with the mucus layers in the GI tract can enable longer residence time, improving the efficacy of oral drug delivery. This review examines the properties and function of mucus in the GI tract, as well as diseases that alter mucus. Three broad classes of mucus-interacting systems are discussed: mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems. For each class of system, the basis for mucus interaction is presented, and examples of materials that inform the development of these systems are discussed and reviewed. Finally, a list of FDA-approved mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems is reviewed. In summary, this review highlights the progress made in developing mucus-interacting systems, both at a research-scale and commercial-scale level, and describes the theoretical basis for each type of system.


Subject(s)
Nanoparticle Drug Delivery System , Nanoparticles , Administration, Oral , Expectorants/metabolism , Expectorants/pharmacology , Gastrointestinal Tract/metabolism , Humans , Intestinal Absorption , Mucus
7.
Part Fibre Toxicol ; 19(1): 55, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933442

ABSTRACT

As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.


Subject(s)
Environmental Pollutants , Nanoparticles , Microplastics , Nanoparticles/toxicity , Risk Assessment
8.
J Vis Exp ; (185)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35938846

ABSTRACT

Biomimetic nanoparticles obtained from bacteria or viruses have attracted substantial interest in vaccine research and development. Outer membrane vesicles (OMVs) are mainly secreted by gram-negative bacteria during average growth, with a nano-sized diameter and self-adjuvant activity, which may be ideal for vaccine delivery. OMVs have functioned as a multifaceted delivery system for proteins, nucleic acids, and small molecules. To take full advantage of the biological characteristics of OMVs, bioengineered Escherichia coli-derived OMVs were utilized as a carrier and SARS-CoV-2 receptor-binding domain (RBD) as an antigen to construct a "Plug-and-Display" vaccine platform. The SpyCatcher (SC) and SpyTag (ST) domains in Streptococcus pyogenes were applied to conjugate OMVs and RBD. The Cytolysin A (ClyA) gene was translated with the SC gene as a fusion protein after plasmid transfection, leaving a reactive site on the surface of the OMVs. After mixing RBD-ST in a conventional buffer system overnight, covalent binding was formed between the OMVs and RBD. Thus, a multivalent-displaying OMV vaccine was achieved. By replacing with diverse antigens, the OMVs vaccine platform can efficiently display a variety of heterogeneous antigens, thereby potentially rapidly preventing infectious disease epidemics. This protocol describes a precise method for constructing the OMV vaccine platform, including production, purification, bioconjugation, and characterization.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Antigens/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , SARS-CoV-2
9.
Phys Rev Lett ; 129(4): 047801, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35939033

ABSTRACT

Single-chain nanoparticles (SCNPs) are a new class of bio- and soft-matter polymeric objects in which a fraction of the monomers are able to form equivalently intra- or interpolymer bonds. Here we numerically show that a fully entropic gas-liquid phase separation can take place in SCNP systems. Control over the discontinuous (first-order) change-from a phase of independent diluted (fully-bonded) polymers to a phase in which polymers entropically bind to each other to form a (fully-bonded) polymer network-can be achieved by a judicious design of the patterns of reactive monomers along the polymer chain. Such a sensitivity arises from a delicate balance between the distinct entropic contributions controlling the binding.


Subject(s)
Nanoparticles , Entropy , Polymers
10.
Adv Food Nutr Res ; 101: 237-275, 2022.
Article in English | MEDLINE | ID: mdl-35940707

ABSTRACT

Bioactive compounds in foods, nutraceuticals and pharmaceutical have been gaining interest due to health benefits, which can help to reduce the risk of certain chronic diseases. Recently, nanoencapsulation have attract attention because it is an efficient and promising approach for protection of bioactive compounds, and delivery them to the target physiological sites for controlled release and improvement absorption. Food proteins are promising materials to be fabricated into a variety of nanostructured delivery systems because of their high nutritional value, good functional properties, and health-benefiting effects. Various techniques and approaches are utilized to prepare nanostructured food protein. This chapter introduces the major techniques for the fabrication of nanoparticles and nanoemulsions from food proteins. The basic principles, advantages, and limitations of the techniques are discussed. The encapsulation and release of bioactive compounds in different nanostructured food proteins are illustrated in specific case studies. Due to the fast growing interest of bioactive encapsulation in various sectors, this chapter is of importance for guiding the development of nanostructured food protein loaded with bioactive ingredients for food, nutraceutical and pharmaceutical applications.


Subject(s)
Nanoparticles , Nanostructures , Dietary Supplements , Pharmaceutical Preparations
11.
Food Res Int ; 159: 111574, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35940756

ABSTRACT

Titanium dioxide (TiO2) is commonly used as food whitening in candies, chocolates, and cakes with high carbohydrate contents. The potential interaction between the food carbohydrate and food grade TiO2 nanoparticle was little known. Therefore, we explored the interaction between TiO2 nanoparticles and seven common carbohydrates, including monosaccharides, disaccharides, and polysaccharides. The result showed that all the carbohydrates tested interacted with the surfaces of the TiO2 nanoparticles and formed biocoronas. TEM and SEM images provided information about the morphology formation of biocoronas. The surface potential and size of the TiO2 nanoparticles altered after interacting with the carbohydrates. FTIR spectroscopy and QCM-D findings showed insights into the molecular origin and nature interaction between TiO2 and carbohydrates. The results illustrated that TiO2 nanoparticles can interact with carbohydrates, enter the body as a food additive, and interact with food matrix for a series of reactions. Compared with monosaccharides or disaccharides, food polysaccharides have stronger adsorption on the surface of nanoparticles. This is a preliminary judgment for the subsequent in vitro simulated digestion. Our result could be useful for understanding and controlling the behavior of nanoparticles in food and the human gut.


Subject(s)
Nanoparticles , Titanium , Carbohydrates , Disaccharides , Humans , Monosaccharides , Nanoparticles/chemistry , Plants, Edible , Titanium/chemistry
12.
Food Res Int ; 159: 111586, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35940786

ABSTRACT

Lactoferrin (L), chitosan (C) and gellan (G) nanoparticles were produced by electrostatic complexation, aiming to enhance the antimicrobial characteristics of these compounds. Binary complexes (lactoferrin-gellan and chitosan-gellan) and ternary complexes (lactoferrin-chitosan-gellan) were studied in eight different proportions of biopolymers. The antimicrobial activity of nanoparticles against S. aureus was compared with that of pure biopolymers and related to nanoparticle size, charge density and morphology. Those with a 4.5L:4.5C:1G ratio presented the highest positive charge density (+57.90 ± 1.50) mV and smaller hydrodynamic diameter (53.53 ± 2.06) nm, which resulted in the highest antimicrobial action (minimum inhibitory concentration of 0.0117 mg/ml). When applied to a coating of fresh strawberries, the nanoparticles were effective in preserving their physicochemical properties, especially in the presence of carboxymethylcellulose that enhanced the adhesion of particles to the fruits. In this study, the antimicrobial action of nanoparticles was better than that of lactoferrin and pure chitosan alone, proving that the antimicrobial properties of such biopolymers were enhanced due to aggregation at the nanoscale. The nanoparticles produced have outstanding application potential as natural food preservers.


Subject(s)
Anti-Infective Agents , Chitosan , Fragaria , Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biopolymers/chemistry , Biopolymers/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Lactoferrin/chemistry , Lactoferrin/pharmacology , Nanoparticles/chemistry , Polysaccharides, Bacterial , Staphylococcus aureus
13.
Methods Mol Biol ; 2531: 243-257, 2022.
Article in English | MEDLINE | ID: mdl-35941490

ABSTRACT

Capillary electrophoresis (CE) can be used for the separation of nanoparticles (NPs). Coupling of CE to inductively coupled plasma mass spectrometry (ICP-MS) or single particle (sp)-ICP-MS enhances the analytical performance and capabilities of the method compared to CE with a standard detector (ultraviolet visible spectroscopy), in particular for trace analysis of metals or metal-containing compounds. spICP-MS is a method for NP analysis, where a standard ICP-MS setup is used with fast time-resolved detection in order to obtain information on individual NPs. Here we describe a method for the separation and detection of silver and gold NPs using CE-ICP-MS and CE-spICP-MS with reversed electrode polarity stacking mode (REPSM) for online preconcentration. CE-spICP-MS allows obtaining the average size, size distribution, elemental composition, and particle number concentration (PNC) of NPs in addition to a CE separation profile in a single run. Moreover, CE-spICP-MS can be used in some cases to separate NPs with different coatings.


Subject(s)
Metal Nanoparticles , Nanoparticles , Electrophoresis, Capillary , Gold/chemistry , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Particle Size
14.
BMC Oral Health ; 22(1): 331, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941677

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the postbrushing tooth-whitening effect of toothpaste containing hydroxyapatite nanoparticles (nano-HAPs). The impact of the concentration on the whitening performance of nano-HAP toothpaste was also investigated. METHODS: Two concentrations of nano-HAP (10 wt% and 1 wt%) were incorporated in nonabrasive toothpastes. Forty bovine incisors were randomly assigned into four groups: 10 wt% nano-HAP, 1 wt% nano-HAP, toothpaste without nano-HAP as a negative control and water as a blank control. Each tooth was treated with the toothpaste three times and hydrodynamic shear force (HSF) once. The teeth surfaces were observed by SEM after each application. Tooth color (L*, a* and b* values) was measured by a spectrophotometer, and color changes (△E, △L, △a and △b values) were calculated. Two-way mixed ANOVA was performed to evaluate the influence of the concentration and repeated application on the tooth-whitening effect of nano-HAP. RESULTS: We found that nano-HAP-treated enamel exhibited higher L* values and lower a* and b* values than the control groups (P < 0.05). The 10 wt% nano-HAP group showed significantly higher △E values than the 1 wt% nano-HAP group (P < 0.05). After three applications, the △E mean value of the 10 wt% nano-HAP group was 4.47. The △E and △L values were slightly reduced after HSF (P < 0.05). For both nano-HAP groups, HAP single crystallites and agglomerates were identified, and their sizes grew with nano-HAP reapplication. CONCLUSIONS: In conclusion, nano-HAP toothpaste has a satisfying postbrushing whitening effect and good resistance to mechanical forces. The whitening effect seemed to be concentration-dependent.


Subject(s)
Nanoparticles , Tooth Bleaching , Tooth , Animals , Cattle , Durapatite/therapeutic use , Humans , Incisor , Nanoparticles/therapeutic use , Tooth Bleaching/adverse effects , Toothpastes/therapeutic use
15.
Drug Deliv ; 29(1): 2621-2631, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35941835

ABSTRACT

Colorectal cancer remains one of the main causes of cancer-related deaths worldwide. Although numerous nanomedicine formulations have been developed to tackle the disease, their low selectivity still limits effective therapeutic outcomes. In this study, we isolated extracellular vesicles (EVs) from CT26 colorectal cancer cells and 4T1 murine mammary carcinoma cells, loaded them with the chemotherapeutic agent (doxorubicin, DOX). Then we evaluated the cellular uptake of the extracellular vesicles both in 2D monolayer and 3D tumor spheroid setups using confocal laser scanning microscope and flow cytometry. In vivo tumor homing of the extracellular vesicles was verified on CT26 tumor bearing BALB/c mice using in vivo imaging system. Finally, in vivo therapeutic effects were evaluated and compared using the same animal models treated with five doses of EV formulations. CT26-EV-DOX exhibited excellent biocompatibility, a high drug-loading capacity, controlled drug release behavior, and a high capability for targeting colorectal cancer cells. In particular, we verified that CT26-EV-DOX could preferentially be up taken by their parent cells and could effectively target and penetrate 3D tumor spheroids resembling colorectal tumors in vivo in comparison with their 4T1 derived EV partner. Additionally, treatment of colorectal tumor-bearing BALB/c mice with of CT26-EV-DOX significantly inhibited the growth of the tumors during the treatment course. The developed CT26-EV-DOX nanoparticles may present a novel and effective strategy for the treatment of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Nanoparticles , Animals , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Mice , Mice, Inbred BALB C
16.
Biomed Res Int ; 2022: 1231446, 2022.
Article in English | MEDLINE | ID: mdl-35941977

ABSTRACT

Objective: Nanodelivery is a modern technology involving improved delivery methods and drug formulations. The current development and initial applications of nanocarriers are pointing to new directions in the current development of nanomedicine. Researchers are increasingly applying nanodelivery to the delivery of therapeutic or diagnostic agents. This article discusses the preparation and application of nanocomplexes and nanoparticles, as well as their potential future value in clinical research. Through a review and analysis, it is hoped that this will serve as a guide for the future development of various nanodelivery technologies and help researchers learn more about these technologies. Materials and Methods: A literature search was conducted using the keywords "Nano drug delivery" or "Nanomedical materials" or "Nano". A literature search was conducted in three major databases, PubMed, Web of Science, and Google Scholar, using the keywords such as "Nano drug delivery", "Nanomedical materials", or "Nanobubble drug delivery". The initial search was screened by title and abstract. In the full-text review, the titles or abstracts were reviewed according to the selection criteria based on the inclusion criteria. The risk of bias and study quality was assessed according to the Cochrane guidelines, and possible biases such as selection bias and good selection bias were included in the review. Results: A total of 297 studies were included in this study, of which 219 were excluded based on the screening criteria, resulting in the inclusion of 78 studies, the majority of which were original studies and clinical trials, and a small number of which provided design and route of administration analysis of nanomaterial particles and effect fluorograms and were studied in more depth. This paper summarises and reviews the views and directions of the included articles. The main directions include cyclodextrin-based or grafted cyclodextrin nanomaterials, nanobubbles, and stimuli-sensitive and temperature-sensitive nanodelivery systems. Conclusion: The use of innovative, targeted drug delivery systems is effective in cancer drug delivery by summarising the previous studies. However, nanodelivery systems' risks and therapeutic effects need to be evaluated before clinical application. Future research in the field of targeted drug delivery nanosystems should focus on the development of nanocarriers with high in vivo delivery capacity, good synergy with therapeutic agents, and milder short-term and long-term toxicological effects and conduct comprehensive preclinical trials on nanodrug delivery systems with high potential for clinical application as soon as possible, to find nanodrug delivery systems suitable for clinical use and put them into the clinical application as soon as possible.


Subject(s)
Cyclodextrins , Nanoparticles , Data Analysis , Drug Delivery Systems , Nanomedicine , Nanoparticles/therapeutic use
17.
Biomater Adv ; 138: 212936, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35913229

ABSTRACT

Traumatic optic neuropathy (TON) is the major contributor to optic nerve damage, where the retinal ganglion cells (RGCs) are substantially lost. However, the underlying pathological mechanisms for these conditions remain largely elusive. Present work conducted a study on TON rat model, where the iron-dependent cyclooxygenase-2 (COX-2) overexpression and lipid peroxidation were observed in RGCs, suggesting ferroptosis, an iron-dependent non-apoptotic cell death, is involved in TON-induced death of RGCs. Hence, the newly formulated hyaluronic acid (HA)-based deferoxamine (DFO) nanoparticles (DFO-NPs) were intravitreally administrated in the rat model. It was hypothesized that the effective delivery of DFO, iron chelator, to the RGCs might rescue RGC ferroptosis from TON-induced injury. Also, since DFO is poor in bioavailability and of very short half-life in vivo, its safe and efficient intravitreal delivery is critical. Therefore, DFO-NPs were prepared by chemical grafting DFO onto HA molecules, and then crosslinking them in microemulsion bubbles for nanoparticles formulation. The nanoparticles were highly accumulated around the ganglionic cells and DFO uptake was increased in RGCs, accompanied by the significantly inhibited the overexpression of COX-2 and inactivation of glutathione peroxidase 4 (GPX4). These results indicate that DFO-NPs acted as an effective ferroptosis inhibitor, for the prevention of TON-induced RGC death. The current study provides new insights into the underlying mechanism of TON-induced RGC death, which may help to explore a novel strategy for the treatment of TON.


Subject(s)
Ferroptosis , Nanoparticles , Optic Nerve Injuries , Animals , Cyclooxygenase 2/metabolism , Deferoxamine/pharmacology , Iron/metabolism , Nanoparticles/therapeutic use , Optic Nerve Injuries/drug therapy , Rats , Retinal Ganglion Cells
18.
Biomater Adv ; 138: 212876, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35913233

ABSTRACT

Mitochondrial damage is one of the primary causes of neuronal cell death in Parkinson's disease (PD). In PD patients, the mitochondrial damage can be repaired or irreversible. Therefore, mitochondrial damage repair becomes a promising strategy for PD treatment. In this research, hyaluronic acid nanoparticles (HA-NPs) of different molecular weights are used to protect the mitochondria and salvage the mild and limited damage in mitochondria. The HA-NPs with 2190 k Dalton (kDa) HA can improve the mitochondrial function of SH-SY5Y cells and PTEN induced putative kinase 1 (PINK1) knockout mouse embryo fibroblast (MEF) cells. In cases of irreversible damage, NPs with ubiquitin specific peptidase 30 (USP30) siRNA are used to promote mitophagy. Meanwhile, by adding PINK1 antibodies, the NPs can selectively target the irreversibly damaged mitochondria, preventing the excessive clearance of healthy mitochondria.


Subject(s)
Nanoparticles , Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Nanoparticles/therapeutic use , Neuroblastoma/metabolism , Parkinson Disease/drug therapy , Protein Kinases/genetics , Thiolester Hydrolases/metabolism , Ubiquitin-Protein Ligases/genetics
19.
Biomater Adv ; 138: 212957, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35913243

ABSTRACT

The particularity of the tumor microenvironment (TME) significantly limits the efficiency of chemodynamic therapy (CDT). Although various measures have been taken to improve the efficiency of CDT, how to organically integrate them into one nanosystem to achieve efficient synergy for CDT according to predetermined procedures is still an urgent problem to be solved. This work reported a multifunctional nanosystem, TPI@PPCAI, which comprised the inner triphenylphosphine modified D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS-PPh3) micelles loading iron-oxide nanoparticles (IONs), and the outer poly (dopamine-co-protocatechuic acid) (PDA-PA, PP) coating modified with carbonic anhydrase IX inhibitor (CAI). TPI@PPCAI remodeled TME by sequential function adjustment to make it suitable for the efficient Fenton reactions: CAI first inhibited the overexpressed CA IX to result in intracellular acidification, which combined with near-infrared light (NIR) irradiation to accelerate the PP coating degradation, thereby promoting the exposure and disintegration of the inner micellar structure to release TPGS-PPh3 and IONs. The TPGS-PPh3 further elevated the intracellular ROS basal level by targeting and interfering with the mitochondrial function. Therefore, the TME was transformed into an acidic microenvironment with high ROS levels, which vigorously promoted the Fenton reaction mediated by IONs with the aid of photothermal effect induced by PP coating via NIR irradiation, ultimately earning high-efficiency CDT on xenograft MDA-MB-231 tumor-bearing mice. This study improved the efficiency of Fenton reaction in biological systems through the practical design of nanostructures and provided a novel thought for ROS-mediated therapy.


Subject(s)
Nanoparticles , Tumor Microenvironment , Animals , Cell Line, Tumor , Humans , Ions/pharmacology , Mice , Micelles , Nanoparticles/therapeutic use , Reactive Oxygen Species/pharmacology
20.
J Appl Biomater Funct Mater ; 20: 22808000221114715, 2022.
Article in English | MEDLINE | ID: mdl-35912571

ABSTRACT

The analysis of nanofluids under various physical scenarios convinced the researchers and scientists because of their broad range of applications in potential area of the current time like chemical engineering, biomedical engineering and applied thermal engineering etc. To give the final shape of many industrial and engineering processes, enhanced heat transfer desired, therefore, the study of Al2O3-H2O, γAl2O3-H2O, Al2O3-C2H6O2, and γAl2O3- C2H6O2 nanofluids is reported. The model successfully achieved after mathematical operations and by appealing similarity transforms. To examine the behavior of heat transfer, numerical tools utilized and performed the results. It is observed that enhanced heat transfer in Al2O3-H2O, γAl2O3-H2O, Al2O3-C2H6O2, and γAl2O3-C2H6O2 could be attained by setting nanoparticles concentration up to 20%. For Al2O3-H2O, γAl2O3-H2O, optimum heat transfer trends noticed due to their prominent thermophysical values. Also, fewer effects of combined convection on θ(η) examined.


Subject(s)
Convection , Nanoparticles , Aluminum , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...