Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Dermatol ; 33(1): e14988, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284184

RESUMEN

Fluoxetine is a safe antidepressant with remarkable anti-inflammatory actions; therefore, we aimed to investigate its effects on immortalized (HaCaT) as well as primary human epidermal keratinocytes in a polyinosinic-polycytidylic acid (p(I:C))-induced inflammatory model. We found that a non-cytotoxic concentration (MTT-assay, CyQUANT-assay) of fluoxetine significantly suppressed p(I:C)-induced expression and release of several pro-inflammatory cytokines (Q-PCR, cytokine array, ELISA), and it decreased the release of the itch mediator endothelins (ELISA). These effects were not mediated by the inhibition of the NF-κB or p38 MAPK pathways (western blot), or by the suppression of the p(I:C)-induced elevation of mitochondrial ROS production (MitoSOX Red labeling). Instead, unbiased activity profiling revealed that they were most likely mediated via the inhibition of the phosphoinositide 3-kinase (PI3K) pathway. Importantly, the PI3K-inhibitor GDC0941 fully mimicked the effects of fluoxetine (Q-PCR, ELISA). Although fluoxetine was able to occupy the binding site of GDC0941 (in silico molecular docking), and exerted direct inhibitory effect on PI3K (cell-free PI3K activity assay), it exhibited much lower potency and efficacy as compared to GDC0941. Finally, RNA-Seq analysis revealed that fluoxetine deeply influenced the transcriptional alterations induced by p(I:C)-treatment, and exerted an overall anti-inflammatory activity. Collectively, our findings demonstrate that fluoxetine exerts potent anti-inflammatory effects, and suppresses the release of the endogenous itch mediator endothelins in human keratinocytes, most likely via interfering with the PI3K pathway. Thus, clinical studies are encouraged to explore whether the currently reported beneficial effects translate in vivo following its topical administration in inflammatory and pruritic dermatoses.


Asunto(s)
Fluoxetina , Indazoles , Fosfatidilinositol 3-Quinasas , Sulfonamidas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fluoxetina/farmacología , Fluoxetina/metabolismo , Simulación del Acoplamiento Molecular , Queratinocitos/metabolismo , Citocinas/metabolismo , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Prurito/metabolismo
2.
Sci Rep ; 13(1): 19618, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949940

RESUMEN

(-)-Cannabidiol (CBD) and (-)-cannabigerol (CBG) are two major non-psychotropic phytocannabinoids that have many beneficial biological properties. However, due to their low water solubility and prominent first-pass metabolism, their oral bioavailability is moderate, which is unfavorable for medicinal use. Therefore, there is a great need for appropriate chemical modifications to improve their physicochemical and biological properties. In this study, Mannich-type reaction was used for the synthetic modification of CBD and CBG for the first time, and thus fifteen new cannabinoid derivatives containing one or two tertiary amino groups were prepared. Thereafter the antiviral, antiproliferative and antibacterial properties of the derivatives and their effects on certain skin cells were investigated. Some modified CBD derivatives showed remarkable antiviral activity against SARS-CoV-2 without cytotoxic effect, while synthetic modifications on CBG resulted in a significant increase in antiproliferative activity in some cases compared to the parent compound.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabidiol/farmacología , Cannabinoides/farmacología , Disponibilidad Biológica , Antivirales/farmacología
3.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456955

RESUMEN

Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in the management of the disease, we still lack curative treatments for it. Thus, there is an unmet societal demand to identify further details of its pathogenesis to thereby pave the way for novel therapeutic approaches with favorable side effect profiles. It is commonly accepted that dysfunction of the complex cutaneous barrier plays a central role in the development of AD; therefore, the signaling pathways involved in the regulation of this quite complex process are likely to be involved in the pathogenesis of the disease and can provide novel, promising, yet unexplored therapeutic targets. Thus, in the current review, we aim to summarize the available potentially AD-relevant data regarding one such signaling pathway, namely cutaneous opioidergic signaling.


Asunto(s)
Dermatitis Atópica , Receptores Opioides , Administración Cutánea , Niño , Humanos , Receptores Opioides/metabolismo , Transducción de Señal , Piel/metabolismo
4.
J Invest Dermatol ; 140(10): 1909-1918.e8, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32142797

RESUMEN

We have shown previously that endocannabinoids promote sebaceous lipogenesis, and sebocytes are involved in the metabolism of the endocannabinoid-like substance oleoylethanolamide (OEA). OEA is an endogenous activator of GPR119, a recently deorphanized receptor, which currently is being investigated as a promising antidiabetic drug target. In this study, we investigated the effects of OEA as well as the expression and role of GPR119 in human sebocytes. We found that OEA promoted differentiation of human SZ95 sebocytes (elevated lipogenesis, enhanced granulation, and the induction of early apoptotic events), and it switched the cells to a proinflammatory phenotype (increased expression and release of several proinflammatory cytokines). Moreover, we could also demonstrate that GPR119 was expressed in human sebocytes, and its small interfering RNA-mediated gene silencing suppressed OEA-induced sebaceous lipogenesis, which was mediated via c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, protein kinase B, and CRE-binding protein activation. Finally, our pilot data demonstrated that GPR119 was downregulated in the sebaceous glands of patients with acne, arguing that GPR119 signaling may indeed be disturbed in acne. Collectively, our findings introduce the OEA/GPR119 signaling as a positive regulator of sebocyte differentiation and highlight the possibility that dysregulation of this pathway may contribute to the development of seborrhea and acne.


Asunto(s)
Receptores Acoplados a Proteínas G/fisiología , Glándulas Sebáceas/citología , Glándulas Sebáceas/fisiología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/biosíntesis , Endocannabinoides/farmacología , Humanos , Ácidos Oléicos/farmacología , PPAR alfa/fisiología , Glándulas Sebáceas/inmunología , Transducción de Señal/fisiología
5.
Molecules ; 24(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845666

RESUMEN

The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB1, CB2), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.


Asunto(s)
Cannabinoides/farmacología , Endocannabinoides/metabolismo , Transducción de Señal/efectos de los fármacos , Enfermedades de la Piel/terapia , Piel/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Homeostasis , Humanos , Receptores de Cannabinoides/metabolismo , Enfermedades de la Piel/metabolismo , Fenómenos Fisiológicos de la Piel , Investigación Biomédica Traslacional/métodos , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...