Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cent Nerv Syst Dis ; 14: 11795735221123896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407561

RESUMEN

Since the original description of Alzheimer´s disease (AD), research into this condition has mainly focused on assessing the alterations to neurons associated with dementia, and those to the circuits in which they are involved. In most of the studies on human brains and in many models of AD, the glial cells accompanying these neurons undergo concomitant alterations that aggravate the course of neurodegeneration. As a result, these changes to neuroglial cells are now included in all the "pathogenic cascades" described in AD. Accordingly, astrogliosis and microgliosis, the main components of neuroinflammation, have been integrated into all the pathogenic theories of this disease, as discussed in this part of the two-part monograph that follows an accompanying article on gliopathogenesis and glioprotection. This initial reflection verified the implication of alterations to the neuroglia in AD, suggesting that these cells may also represent therapeutic targets to prevent neurodegeneration. In this second part of the monograph, we will analyze the possibilities of acting on glial cells to prevent or treat the neurodegeneration that is the hallmark of AD and other pathologies. Evidence of the potential of different pharmacological, non-pharmacological, cell and gene therapies (widely treated) to prevent or treat this disease is now forthcoming, in most cases as adjuncts to other therapies. A comprehensive AD multimodal therapy is proposed in which neuronal and neuroglial pharmacological treatments are jointly considered, as well as the use of new cell and gene therapies and non-pharmacological therapies that tend to slow down the progress of dementia.

2.
J Cent Nerv Syst Dis ; 14: 11795735221128703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238130

RESUMEN

Since Alois Alzheimer described the pathology of Alzheimer's disease in 1907, an increasing number of studies have attempted to discover its causes and possible ways to treat it. For decades, research has focused on neuronal degeneration and the disruption to the neural circuits that occurs during disease progression, undervaluing in some extent the alterations to glial cells even though these alterations were described in the very first studies of this disease. In recent years, it has been recognized that different families of neuroglia are not merely support cells for neurons but rather key and active elements in the physiology and pathology of the nervous system. Alterations to different types of neuroglia (especially astroglia and microglia but also mature oligodendroglia and oligodendroglial progenitors) have been identified in the initial neuropathological changes that lead to dementia, suggesting that they may represent therapeutic targets to prevent neurodegeneration. In this review, based on our own studies and on the relevant scientific literature, we argue that a careful and in-depth study of glial cells will be fundamental to understanding the origin and progression of Alzheimer's disease. In addition, we analyze the main issues regarding the neuroprotective and neurotoxic role of neuroglial changes, reactions and/or involutions in both humans with Alzheimer's disease and in experimental models of this condition.

3.
Curr Biol ; 26(12): 1577-1584, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27238284

RESUMEN

Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma Fúngico , Mucor/genética , Phycomyces/genética , Transducción de Señal/genética , Luz , Mucor/efectos de la radiación , Familia de Multigenes , Percepción , Phycomyces/efectos de la radiación , Transcripción Genética/efectos de la radiación
4.
J Cell Mol Med ; 16(9): 2017-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22129439

RESUMEN

In idiopathic portal hypertension (IPH) typical vascular lesions are present in the branches of the portal vein or in the perisinusoidal area of the liver. Similar histological alterations have been reported in the pulmonary vasculature of patients with idiopathic pulmonary artery hypertension (IPAH). As IPAH is associated with mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, the aim of this study was to investigate whether this association might also be found in patients with IPH. Twenty-three samples belonging to 21 unrelated caucasian patients with IPH followed in the hepatic haemodynamic laboratory of the Hospital Clinic in Barcelona were included in the study. All patients were studied for the entire open reading frame and splice site of the BMPR2 gene by direct sequencing and multiple ligation probe amplification (MLPA) in order to detect large deletions/duplications. None of the 23 patients had pulmonary artery hypertension. Four patients presented one single nucleotide polymorphism (SNP) in intron 5, four patients had a SNP in exon 12 and a SNP in exon 1 was found in two cases. Two patients had both intron 5 and exon 12 polymorphisms. All SNPs were previously described. Except for these three SNPs, neither mutations nor rearrangements have been identified in the BMPR2 gene in this population. We did not detect mutations or rearrangements in the coding region of the BMPR2 gene in our patients with IPH. These findings suggest that, in contrast to IPAH, mutations in BMPR2 are not involved in the pathogenesis of IPH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Hipertensión Portal/genética , Cirrosis Hepática/genética , Pancitopenia/genética , Esplenomegalia/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Niño , Exones , Femenino , Reordenamiento Génico , Humanos , Hipertensión Portal/fisiopatología , Intrones , Cirrosis Hepática/fisiopatología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mutación , Pancitopenia/fisiopatología , Polimorfismo de Nucleótido Simple , ARN/genética , ARN/aislamiento & purificación , Esplenomegalia/fisiopatología , Adulto Joven , Hipertensión Portal Idiopática no Cirrótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...