Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6318, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491325

RESUMEN

Environmental niche modeling (ENM) has emerged as a promising tool for identifying grass species with potential for rangeland restoration. This approach can detect suitable areas and environments where these species can be planted. In this study, we employed ENM to estimate the potential distribution range of 50 grass species of the grasslands and shrublands of northern Mexico. The outcome of the ENM served to identify grass species with potential for restoration in Mexico, especially those not commonly used for that purpose in the past. Results suggested the possibility of selecting seven grass species with the potential for revegetating degraded grasslands, nine for shrublands, and six for alkaline soils. This research provides insights into the environmental adaptations of different grass species distributed in the rangelands of northern Mexico. Ecologists, conservation planners, researchers, and range managers could use these outcomes and the maps of the potential distribution ranges as supportive information to conduct effective restoration efforts. In turn, this can assist in increasing the probability of success of future rangelands restoration programs, which are often costly in terms of financial investments and labor.


Asunto(s)
Ecosistema , Poaceae , México , Conservación de los Recursos Naturales/métodos , Suelo
2.
PLoS One ; 17(7): e0270935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35905097

RESUMEN

Induced mutagenesis through gamma radiation generates structural and chemical changes in plants. This study evaluated the morphological and nutritional variability of natal grass [Melinis repens (Willd.) Zizka] plants produced from seed irradiated with gamma radiation. Natal grass seed was collected from wild populations in the state of Chihuahua, Mexico. The seed was exposed to a source of Co60. The radiation doses were: 0, 10, 50, 100, 150, 200, 250, 300 and 350 Gray (Gy). Sixty-six first generation mutant genotypes (M1), produced from irradiated seed, and nine non-mutant genotypes (M0), developed from non-irradiated seed (0 Gy), were evaluated. For the morphological characterization, 18 variables were measured on the plants when they were at the reproductive stage. The nutritional analysis was performed on the M0, as well as on a group of plants from the M1, which resulted morphologically different (p <0.005) from the rest. The differenced M1 plants were classified as promising mutant genotypes (M1p). Results showed that variability was induced in the M1p. These individuals presented morphological differences in leaf weight-tillering weight ratio and foliage height, compared to the rest of the plants (p <0.001). The M1p 250-10 genotype presented the highest (p <0.001) crude protein and the lowest (p <0.001) lignin contents. Gamma radiation in the seed of natal grass induced morphological and nutritional variability. With that, promising mutant genotypes, with desirable morphological and nutritional attributes, were identified.


Asunto(s)
Melinis repens , Semillas , Rayos gamma , Humanos , México , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Semillas/genética
3.
Plants (Basel) ; 11(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35567161

RESUMEN

In Mexico, buffelgrass (Cenchrus ciliaris) was introduced in the middle of the 20th century. Currently, buffelgrass has become an invasive species and has colonized various ecosystems in the country. In addition to its invasive capacity, climate change is a factor that has to be taken into account when considering how to effectively manage and control this species. The climatic niche models (CNM) and their projections for climate change scenarios allow for estimating the extent of biological invasions. Our study aimed to calibrate a CNM for buffelgrass in Mexico under the current climatic conditions and to project the extent of its biological invasion under climate change scenarios. For that, we used MaxEnt to generate the current CNM and to detect if climate change could cause future changes, we then evaluated the distribution patterns over the periods of 2041-2060, 2061-2080, and 2081-2100 for all the shared socioeconomic pathways (SSPs). Linear regressions were used to compare the outputs between current and future scenarios. Under the current climate, the CNM estimated that 42.2% of the continental surface of Mexico is highly suitable for buffelgrass. The regression analyses indicated no effects from climate change on the distribution of buffelgrass. Moreover, when the projected period is further in the future, and when the SSPs intensify, the surface of suitable areas for the species increases. These analyses clearly suggest Mexico is facing a biological invasion from buffelgrass, which may represent a threat to native biodiversity.

4.
Plants (Basel) ; 11(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35270154

RESUMEN

Understanding the genetic structure adopted by natural populations and its relation to environmental adaptation is critical for the success of restoration programs. We evaluated the genetic structure and temporal environmental niche dynamics of blue grama (Bouteloua gracilis) in 48 populations. The genetic evaluation was performed through amplified fragment length polymorphism (AFLP) molecular markers. The maximum entropy method was used to model the past, present, and future environmental niches of the three clusters derived from the genetic analysis. The environmental niches of the three genetic clusters showed dynamic overlaps and isolations during the last interglacial and glacial maximum. The paleoclimatic events, which occurred during those periods, may have reinforced genetic exchange among populations and affected their genetic structure. Genetic clusters also presented different environmental niches in the present. Thus, they can be considered as three distinct ecotypes and restoration programs must be carried out using local germplasm from each environmental niche to increase their chance of success. Based on the environmental niches of the genetic clusters, changes are expected in the near and mid-century future. Therefore, climate change must be considered for species conservation management and future restoration programs.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35206534

RESUMEN

The use of treated wastewater (TWW) for irrigation has gained global attention since it reduces pressure on groundwater (GW) and surface water. This study aimed to evaluate the effect of TWW on agronomic, photosynthetic, stomatal, and nutritional characteristics of barley plants. The experiment with barley was established on two bands: one band was irrigated with GW and the other with TWW. The evaluation was performed 25, 40, 60, 90, and 115 days after sowing (DAS). Results showed that irrigation with TWW increased (p < 0.01) grain yield by 54.3% and forage yield by 39.4% compared to GW irrigation. In addition, it increased plant height (PH) (p = 0.013), chlorophyll concentration index (CCI) (p = 0.006), and leaf area index (LAI) (p = 0.002). TWW also produced a positive effect (p < 0.05) in all the photosynthetic efficiency parameters evaluated. Barley plants irrigated with TWW had lower stomatal density (SD) and area (SA) (p < 0.001) than plants irrigated with GW. Plants irrigated with TWW had a higher P concentration (p < 0.05) in stems and roots and K concentration in leaves than plants irrigated with GW. We concluded that the use of TWW induced important biochemical, physiological, and agronomic changes in barley plants. Hence, the use of TWW may be a sustainable alternative for barley production in arid and semi-arid regions. This study was part of a government project, which aimed to develop a new metropolitan irrigation district with TWW. This study may contribute to the sustainability of water resources and agricultural practices in northern Mexico.


Asunto(s)
Agua Subterránea , Hordeum , Riego Agrícola , Agricultura/métodos , Clima Desértico , Aguas Residuales/análisis
6.
PLoS One ; 16(7): e0254566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264989

RESUMEN

In the past years, several plant breeding programs have been done to select outstanding genotypes of sideoats grama (Bouteloua curtipendula) for restoration purposes. Such programs have been focused mainly on agronomic traits; however, little attention has been paid to the genetic structure and environmental adaptation of the selected genotypes. Thus, in this study we evaluated the genetic structure of 85 sideoats grama populations in Mexico. In addition, we modeled the past, present and future environmental niche of the genetic clusters of this species. Ninety sideoats grama populations were genetically analyzed through AFLP (Amplified Fragment Length Polymorphisms) markers. The environmental niche of the population clusters was modeled by using the maximum entropy method. The genetic analysis separated the populations into two genetically different clusters (p = 0.0003). The differentiation of these lineages can be partially explained by the paleoclimatic events experienced during the last interglacial and glacial maximums. Consequently, the genetic clusters have different environmental niche at the present time. Suitability areas for the distribution of Cluster I are mainly located in the central part of the country while the environmental niche of Cluster II is located in the semiarid region, close to the mountain range of the Sierra Madre Occidental. Thus, selection and restoration programs with sideoats grama must be carried out using local germplasm from each environmental niche. Given the environmental niche of both genetic clusters will suffer changes in the near and mid-century future, climate change must be considered for genotypes selection and restoration programs.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Variación Genética , México , Filogenia , Fitomejoramiento , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...