Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 15: 773696, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916910

RESUMEN

The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.

2.
Brain Behav Immun ; 93: 23-34, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278561

RESUMEN

One of the main challenges to understand drug addiction is defining the biological mechanisms that underlie individual differences in recidivism. Studies of these mechanisms have mainly focused on the brain, yet we demonstrate here a significant influence of the peripheral immune system on this phenomenon. Lewis (LEW) and Fischer 344 (F344) rats have different immunological profiles and they display a distinct vulnerability to the reinforcing effects of cocaine, with F344 more resistant to reinstate cocaine-seeking behavior. Bone marrow from male LEW and F344 rats was transferred to male F344 rats (F344/LEW-BM and F344/F344-BM, respectively), and these rats were trained to self-administer cocaine over 21 days. Following extinction, these animals received a sub-threshold primer dose of cocaine to evaluate reinstatement. F344/LEW-BM but not F344/F344-BM rats reinstated cocaine-seeking behavior, in conjunction with changes in their peripheral immune cell populations to a profile that corresponded to that of the LEW donors. After cocaine exposure, higher CD4+ T-cells and lower CD4+CD25+ T-cells levels were observed in F344/LEW-BM rats referred to control, and the splenic expression of Il-17a, Tgf-ß, Tlr-2, Tlr-4 and Il-1ß was altered in both groups. We propose that peripheral T-cells respond to cocaine, with CD4+ T-cells in particular undergoing Th17 polarization and generating long-term memory, these cells releasing mediators that trigger central mechanisms to induce reinstatement after a second encounter. This immune response may explain the high rates of recidivism observed despite long periods of detoxification, shedding light on the mechanisms underlying the vulnerability and resilience of specific individuals, and opening new perspectives for personalized medicine in the treatment of relapse.


Asunto(s)
Cocaína , Animales , Médula Ósea , Extinción Psicológica , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Especificidad de la Especie
3.
Eur Neuropsychopharmacol ; 25(10): 1683-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26235957

RESUMEN

Nicotine exerts its addictive influence through the meso-cortico-limbic reward system, where the striatum is essential. Nicotine addiction involves different neurotransmitters, nitric oxide (NO) being especially important, since it triggers the release of the others by positive feedback. In the nervous system, NO is mainly produced by nitric oxide synthase 1 (NOS1). However, other subtypes of synthases can also synthesize NO, and little is known about the specific role of each isoform in the process of addiction. In parallel, NOS activity and nicotine addiction are also affected by stress and sexual dimorphism. To determine the specific role of this enzyme, we analyzed both NOS expression and NO synthesis in the striatum of wild-type and NOS1-knocked out (KO) mice of both sexes in situations of nicotine sensitization and stress. Our results demonstrated differences between the caudate-putamen (CP) and nucleus accumbens (NA). With respect to NOS1 expression, the CP is a dimorphic region (27.5% lower cell density in males), but with a stable production of NO, exclusively due to this isoform. Thus, the nitrergic system of CP may not be involved in stress or nicotine addiction. Conversely, the NA is much more variable and strongly involved in both situations: its NO synthesis displays dimorphic variations at both basal (68.5% reduction in females) and stress levels (65.9% reduction in males), which disappear when nicotine is infused. Thus, the KO animals showed an increase in NO production (21.7%) in the NA, probably by NOS3, in an attempt to compensate the lack of NOS1.


Asunto(s)
Núcleo Caudado/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Núcleo Accumbens/enzimología , Putamen/enzimología , Estrés Psicológico/enzimología , Tabaquismo/enzimología , Animales , Núcleo Caudado/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Isoenzimas/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/enzimología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo I/genética , Núcleo Accumbens/efectos de los fármacos , Putamen/efectos de los fármacos , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA