Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(18): 8600-8606, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33913939

RESUMEN

Metallosupramolecular chemical protocols are applied to in situ design dysprosium porphyrin complexes on Au(111) by sequential deposition of 2H-4FTPP species and Dy, resulting in the production of premetallated Dy-2H-4FTPP, partially metallated Dy-1H-4FTPP and fully metallated Dy-0H-4FTPP complexes, as determined by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. A zero bias resonance is found in the Dy-2H-4FTPP species which, upon study of its spatial distribution and behavior with temperature, is assigned to a Kondo resonance resulting from an unpaired spin in the molecular backbone, featuring a Kondo temperature (TK) of ≈ 21 K. Notably, the Kondo resonance can be switched off by removing one hydrogen atom of the macrocycle through tip-induced voltage pulses with submolecular precision. The species with this Kondo resonance can be laterally manipulated illustrating the potential to assemble artificial Kondo lattices. Our study demonstrates that the pre-metallation of macrocycles by lanthanides and their controlled manipulation is a novel strategy to engineer in situ tunable Kondo nanoarchitectures, enhancing the potential of coordination chemistry for spintronics.

2.
Phys Chem Chem Phys ; 19(12): 8282-8287, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28277577

RESUMEN

Single-molecule magnets based on lanthanide double-deckers are attracting significant attention due to their unrivaled single-ion anisotropy. To exploit their fascinating electronic and magnetic properties in devices for information storage or spin transport, studies on the preservation or variation of electronic and magnetic functionalities upon adsorption on surfaces are necessary. Herein, we introduced a comprehensive scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) surface science study, complemented by density functional theory (DFT) simulations, of a recently synthesized single-molecule magnet based on porphyrazine deckers, conveniently equipped with ethyl moieties to make them soluble and sublimable. We demonstrated that the double-decker species were intactly adsorbed on Au(111), Ag(111), and Cu(111) in a flat-on fashion and self-assembled in hexagonal close-packed layers. Systematic multi- and monolayer XPS was performed on the surface-confined species, confirming the preservation of the electronic properties of the ligands and the lanthanide center upon adsorption.

3.
Chem Commun (Camb) ; 52(75): 11227-30, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27560774

RESUMEN

We report the design of dysprosium directed metallo-supramolecular architectures on a pristine Cu(111) surface. By an appropriate selection of the ditopic molecular linkers equipped with terminal carboxylic groups (TPA, PDA and TDA species), we create reticular and mononuclear metal-organic nanomeshes of tunable internodal distance, which are stabilized by eight-fold DyO interactions. A thermal annealing treatment for the reticular Dy:TDA architecture gives rise to an unprecedented quasi-hexagonal nanostructure based on dinuclear Dy clusters, exhibiting a unique six-fold DyO bonding motif. All metallo-supramolecular architectures are stable at room temperature. Our results open new avenues for the engineering of supramolecular architectures on surfaces incorporating f-block elements forming thermally robust nanoarchitectures through ionic bonds.

4.
J Chem Phys ; 138(15): 154710, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23614439

RESUMEN

We report on the adsorption and self-metalation of a prototypic tetrapyrrole compound, the free-base porphine (2H-P), on the Cu(111) surface. Our multitechnique study combines scanning tunneling microscopy (STM) results with near-edge X-ray absorption fine-structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) data whose interpretation is supported by density functional theory calculations. In the first layer in contact with the copper substrate the molecules adsorb coplanar with the surface as shown by angle-resolved NEXAFS measurements. The quenching of the first resonance in the magic angle spectra of both carbon and nitrogen regions indicates a substantial electron transfer from the substrate to the LUMO of the molecule. The stepwise annealing of a bilayer of 2H-P molecules sequentially transforms the XP and NEXAFS signatures of the nitrogen regions into those indicative of the coordinated nitrogen species of the metalated copper porphine (Cu-P), i.e., we observe a temperature-induced self-metalation of the system. Pre- and post-metalation species are clearly discriminable by STM, corroborating the spectroscopic results. Similar to the free-base porphine, the Cu-P adsorbs flat in the first layer without distortion of the macrocycle. Additionally, the electron transfer from the copper surface to the molecule is preserved upon metalation. This behavior contrasts the self-metalation of tetraphenylporphyrin (2H-TPP) on Cu(111), where both the molecular conformation and the interaction with the substrate are strongly affected by the metalation process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA