Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(1): e0241190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33406134

RESUMEN

Multiple national and international trends and drivers are radically changing what biological security means for the United Kingdom (UK). New technologies present novel opportunities and challenges, and globalisation has created new pathways and increased the speed, volume and routes by which organisms can spread. The UK Biological Security Strategy (2018) acknowledges the importance of research on biological security in the UK. Given the breadth of potential research, a targeted agenda identifying the questions most critical to effective and coordinated progress in different disciplines of biological security is required. We used expert elicitation to generate 80 policy-relevant research questions considered by participants to have the greatest impact on UK biological security. Drawing on a collaboratively-developed set of 450 questions, proposed by 41 experts from academia, industry and the UK government (consulting 168 additional experts) we subdivided the final 80 questions into six categories: bioengineering; communication and behaviour; disease threats (including pandemics); governance and policy; invasive alien species; and securing biological materials and securing against misuse. Initially, the questions were ranked through a voting process and then reduced and refined to 80 during a one-day workshop with 35 participants from a variety of disciplines. Consistently emerging themes included: the nature of current and potential biological security threats, the efficacy of existing management actions, and the most appropriate future options. The resulting questions offer a research agenda for biological security in the UK that can assist the targeting of research resources and inform the implementation of the UK Biological Security Strategy. These questions include research that could aid with the mitigation of Covid-19, and preparation for the next pandemic. We hope that our structured and rigorous approach to creating a biological security research agenda will be replicated in other countries and regions. The world, not just the UK, is in need of a thoughtful approach to directing biological security research to tackle the emerging issues.


Asunto(s)
Pandemias/prevención & control , Medidas de Seguridad/tendencias , Bioterrorismo/prevención & control , COVID-19/prevención & control , Gestión Clínica/tendencias , Comunicación , Transmisión de Enfermedad Infecciosa/prevención & control , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Humanos , Pandemias/estadística & datos numéricos , Políticas , SARS-CoV-2/patogenicidad , Medidas de Seguridad/estadística & datos numéricos , Encuestas y Cuestionarios , Reino Unido/epidemiología
2.
Elife ; 92020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32479263

RESUMEN

Horizon scanning is intended to identify the opportunities and threats associated with technological, regulatory and social change. In 2017 some of the present authors conducted a horizon scan for bioengineering (Wintle et al., 2017). Here we report the results of a new horizon scan that is based on inputs from a larger and more international group of 38 participants. The final list of 20 issues includes topics spanning from the political (the regulation of genomic data, increased philanthropic funding and malicious uses of neurochemicals) to the environmental (crops for changing climates and agricultural gene drives). The early identification of such issues is relevant to researchers, policy-makers and the wider public.


Asunto(s)
Bioingeniería , Cambio Climático , Predicción , Agricultura , Biotecnología , Femenino , Ingeniería Genética , Humanos , Internacionalidad , Masculino , Plantas Modificadas Genéticamente , Política
4.
Elife ; 62017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29132504

RESUMEN

Advances in biological engineering are likely to have substantial impacts on global society. To explore these potential impacts we ran a horizon scanning exercise to capture a range of perspectives on the opportunities and risks presented by biological engineering. We first identified 70 potential issues, and then used an iterative process to prioritise 20 issues that we considered to be emerging, to have potential global impact, and to be relatively unknown outside the field of biological engineering. The issues identified may be of interest to researchers, businesses and policy makers in sectors such as health, energy, agriculture and the environment.


Asunto(s)
Bioingeniería/tendencias , Investigación/tendencias , Cambio Climático , Conservación de los Recursos Naturales , Humanos
5.
FEMS Yeast Res ; 15(5): fov035, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26066552

RESUMEN

Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm-for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components.


Asunto(s)
Evolución Molecular , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Torulaspora/genética , Evolución Biológica , Secuencia Conservada , Complejo Dinactina , Dineínas/genética , Genes Fúngicos , Histidina/biosíntesis , Proteínas Asociadas a Microtúbulos/genética , Familia de Multigenes/genética , Interferencia de ARN , Proteínas de Saccharomyces cerevisiae/genética
6.
J Bacteriol ; 196(11): 2030-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24659774

RESUMEN

We report the development of SearchDOGS Bacteria, software to automatically detect missing genes in annotated bacterial genomes by combining BLAST searches with comparative genomics. Having successfully applied the approach to yeast genomes, we redeveloped SearchDOGS to function as a standalone, downloadable package, requiring only a set of GenBank annotation files as input. The software automatically generates a homology structure using reciprocal BLAST and a synteny-based method; this is followed by a scan of the entire genome of each species for unannotated genes. Results are provided in a HTML interface, providing coordinates, BLAST results, syntenic location, omega values (Ka/Ks, where Ks is the number of synonymous substitutions per synonymous site and Ka is the number of nonsynonymous substitutions per nonsynonymous site) for protein conservation estimates, and other information for each candidate gene. Using SearchDOGS Bacteria, we identified 155 gene candidates in the Shigella boydii sb227 genome, including 56 candidates of length < 60 codons. SearchDOGS Bacteria has two major advantages over currently available annotation software. First, it outperforms current methods in terms of sensitivity and is highly effective at identifying small or highly diverged genes. Second, as a freely downloadable package, it can be used with unpublished or confidential data.


Asunto(s)
Bases de Datos Genéticas , Genoma Bacteriano , Programas Informáticos , Secuencia de Bases , Genómica , Homología de Secuencia de Ácido Nucleico , Shigella boydii/genética , Sintenía
7.
Mol Biol Evol ; 30(6): 1281-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23486613

RESUMEN

The Candida Gene Order Browser (CGOB) was developed as a tool to visualize and analyze synteny relationships in multiple Candida species, and to provide an accurate, manually curated set of orthologous Candida genes for evolutionary analyses. Here, we describe major improvements to CGOB. The underlying structure of the database has been changed significantly. Genomic features are now based directly on genome annotations rather than on protein sequences, which allows non-protein features such as centromere locations in Candida albicans and tRNA genes in all species to be included. The data set has been expanded to 13 species, including genomes of pathogens (C. albicans, C. parapsilosis, C. tropicalis, and C. orthopsilosis), and those of xylose-degrading species with important biotechnological applications (C. tenuis, Scheffersomyces stipitis, and Spathaspora passalidarum). Updated annotations of C. parapsilosis, C. dubliniensis, and Debaryomyces hansenii have been incorporated. We discovered more than 1,500 previously unannotated genes among the 13 genomes, ranging in size from 29 to 3,850 amino acids. Poorly conserved and rapidly evolving genes were also identified. Re-analysis of the mating type loci of the xylose degraders suggests that C. tenuis is heterothallic, whereas both Spa. passalidarum and S. stipitis are homothallic. As well as hosting the browser, the CGOB website (http://cgob.ucd.ie) gives direct access to all the underlying genome annotations, sequences, and curated orthology data.


Asunto(s)
Candida/genética , Bases de Datos Genéticas , Genes Fúngicos , Genoma Fúngico , Genómica/métodos , Programas Informáticos , Secuencia de Aminoácidos , Candida/clasificación , Modelos Teóricos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Interfaz Usuario-Computador
8.
Proc Natl Acad Sci U S A ; 108(50): 20024-9, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22123960

RESUMEN

We investigate yeast sex chromosome evolution by comparing genome sequences from 16 species in the family Saccharomycetaceae, including data from genera Tetrapisispora, Kazachstania, Naumovozyma, and Torulaspora. We show that although most yeast species contain a mating-type (MAT) locus and silent HML and HMR loci structurally analogous to those of Saccharomyces cerevisiae, their detailed organization is highly variable and indicates that the MAT locus is a deletion hotspot. Over evolutionary time, chromosomal genes located immediately beside MAT have continually been deleted, truncated, or transposed to other places in the genome in a process that is gradually shortening the distance between MAT and HML. Each time a gene beside MAT is removed by deletion or transposition, the next gene on the chromosome is brought into proximity with MAT and is in turn put at risk for removal. This process has also continually replaced the triplicated sequence regions, called Z and X, that allow HML and HMR to be used as templates for DNA repair at MAT during mating-type switching. We propose that the deletion and transposition events are caused by evolutionary accidents during mating-type switching, combined with natural selection to keep MAT and HML on the same chromosome. The rate of deletion accelerated greatly after whole-genome duplication, probably because genes were redundant and could be deleted without requiring transposition. We suggest that, despite its mutational cost, switching confers an evolutionary benefit by providing a way for an isolated germinating spore to reform spores if the environment is too poor.


Asunto(s)
Evolución Molecular , Genes del Tipo Sexual de los Hongos/genética , Genes de Cambio/genética , Saccharomyces cerevisiae/genética , Cromosomas Sexuales/genética , Cromosomas Fúngicos/genética , Secuencia Conservada , Elementos Transponibles de ADN/genética , ADN de Hongos/genética , Ligamiento Genético , Sitios Genéticos/genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia/genética
9.
BMC Genomics ; 12: 377, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21791067

RESUMEN

BACKGROUND: In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. RESULTS: We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. CONCLUSIONS: SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external information has been added may prove useful in other settings.


Asunto(s)
Bases de Datos Genéticas , Genes Fúngicos/genética , Genómica , Anotación de Secuencia Molecular/métodos , Homología de Secuencia de Ácido Nucleico , Levaduras/genética , Feromonas/genética , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...