Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dent Res ; 97(3): 283-288, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29125909

RESUMEN

Bleaching of vital teeth has become common practice in cosmetic dentistry today. Tooth sensitivity and demineralization of the enamel are, however, common side effects associated with hydrogen and carbamide peroxide bleaching. This study investigated if calcium phosphate microspheres, which have remineralizing properties, could be used as an additive without hindering the diffusion of the bleaching agent and if the spheres could be used as a carrier for carbamide peroxide. A remineralizing agent could increase the safety of bleaching and decrease the severity of its side effects. Comparisons between current hydrogen peroxide diffusion studies and previously published work are difficult since many studies include challenging-to-replicate conditions or lack reporting of important parameters. Hence, a diffusion model was designed by Wu Lab (School of Dentistry, University of California, Los Angeles) to measure the diffusion flux and determine the diffusivity of hydrogen peroxide. Physical parameters (e.g., diffusivity) could then be used for direct comparison to the results obtained by future studies. Three whitening gels with increasing amounts of spheres were formulated and tested with 2 commercially available whitening gels. The flux of hydrogen peroxide through 1-mm discs of bovine enamel was measured at steady-state conditions, and the diffusivity was calculated. The results showed that the spheres could be used as a carrier for carbamide peroxide and that the amount of spheres did not affect the diffusivity of peroxide through the enamel discs. Hence, the microspheres are considered promising as an additive to minimize side effects in bleaching gel formulation.


Asunto(s)
Fosfatos de Calcio/farmacología , Peróxido de Carbamida/farmacología , Blanqueadores Dentales/farmacología , Blanqueamiento de Dientes/métodos , Remineralización Dental/métodos , Animales , Fosfatos de Calcio/química , Peróxido de Carbamida/química , Bovinos , Combinación de Medicamentos , Geles , Técnicas In Vitro , Microesferas , Blanqueadores Dentales/química
2.
Biomed Mater ; 12(6): 065005, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28714854

RESUMEN

There is a plethora of calcium phosphate (CaP) scaffolds used as synthetic substitutes to bone grafts. The scaffold performance is often evaluated from the quantity of bone formed within or in direct contact with the scaffold. Micro-computed tomography (µCT) allows three-dimensional evaluation of bone formation inside scaffolds. However, the almost identical x-ray attenuation of CaP and bone obtrude the separation of these phases in µCT images. Commonly, segmentation of bone in µCT images is based on gray scale intensity, with manually determined global thresholds. However, image analysis methods, and methods for manual thresholding in particular, lack standardization and may consequently suffer from subjectivity. The aim of the present study was to provide a methodological framework for addressing these issues. Bone formation in two types of CaP scaffold architectures (foamed and robocast), obtained from a larger animal study (a 12 week canine animal model) was evaluated by µCT. In addition, cross-sectional scanning electron microscopy (SEM) images were acquired as references to determine thresholds and to validate the result. µCT datasets were registered to the corresponding SEM reference. Global thresholds were then determined by quantitatively correlating the different area fractions in the µCT image, towards the area fractions in the corresponding SEM image. For comparison, area fractions were also quantified using global thresholds determined manually by two different approaches. In the validation the manually determined thresholds resulted in large average errors in area fraction (up to 17%), whereas for the evaluation using SEM references, the errors were estimated to be less than 3%. Furthermore, it was found that basing the thresholds on one single SEM reference gave lower errors than determining them manually. This study provides an objective, robust and less error prone method to determine global thresholds for the evaluation of bone formation in CaP scaffolds.


Asunto(s)
Fosfatos de Calcio/química , Microscopía Electrónica de Rastreo/métodos , Osteogénesis , Andamios del Tejido/química , Microtomografía por Rayos X/métodos , Animales , Perros , Interpretación de Imagen Radiográfica Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...