Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Syst Rev ; 13(1): 111, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654383

RESUMEN

OBJECTIVE: This systematic review aims to outline the use of population and disease registries for clinical trial pre-screening. MATERIALS AND METHODS: The search was conducted in the time period of January 2014 to December 2022 in three databases: MEDLINE, Embase, and Web of Science Core Collection. References were screened using the Rayyan software, firstly based on titles and abstracts only, and secondly through full text review. Quality of the included studies was assessed using the List of Included Studies and quality Assurance in Review tool, enabling inclusion of publications of only moderate to high quality. RESULTS: The search originally identified 1430 citations, but only 24 studies were included, reporting the use of population and/or disease registries for trial pre-screening. Nine disease domains were represented, with 54% of studies using registries based in the USA, and 62.5% of the studies using national registries. Half of the studies reported usage for drug trials, and over 478,679 patients were identified through registries in this review. Main advantages of the pre-screening methodology were reduced financial burden and time reduction. DISCUSSION AND CONCLUSION: The use of registries for trial pre-screening increases reproducibility of the pre-screening process across trials and sites, allowing for implementation and improvement of a quality assurance process. Pre-screening strategies seem under-reported, and we encourage more trials to use and describe their pre-screening processes, as there is a need for standardized methodological guidelines.


Asunto(s)
Ensayos Clínicos como Asunto , Sistema de Registros , Humanos , Selección de Paciente , Reproducibilidad de los Resultados
2.
Mol Neurodegener ; 18(1): 85, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968725

RESUMEN

BACKGROUND: Plasma biomarkers reflecting the pathology of frontotemporal dementia would add significant value to clinical practice, to the design and implementation of treatment trials as well as our understanding of disease mechanisms. The aim of this study was to explore the levels of multiple plasma proteins in individuals from families with genetic frontotemporal dementia. METHODS: Blood samples from 693 participants in the GENetic Frontotemporal Dementia Initiative study were analysed using a multiplexed antibody array targeting 158 proteins. RESULTS: We found 13 elevated proteins in symptomatic mutation carriers, when comparing plasma levels from people diagnosed with genetic FTD to healthy non-mutation controls and 10 proteins that were elevated compared to presymptomatic mutation carriers. CONCLUSION: We identified plasma proteins with altered levels in symptomatic mutation carriers compared to non-carrier controls as well as to presymptomatic mutation carriers. Further investigations are needed to elucidate their potential as fluid biomarkers of the disease process.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mutación/genética , Proteína C9orf72/genética , Progranulinas/genética , Proteínas tau/genética , Biomarcadores
4.
J Neurol ; 269(6): 3037-3049, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34800171

RESUMEN

BACKGROUND: Frontotemporal dementia (FTD) is a neurodegenerative disease, resulting in progressive problems in language and/or behaviour and is often diagnosed before 65 years of age. Ubiquitin positive protein aggregates in the brain are among the key pathologic hallmarks of frontotemporal lobar degeneration (FTLD) postmortem. The TANK-binding kinase 1 gene (TBK1) is on the list of genes that can contribute to the development of FTD as well as the related neurodegenerative disease amyotrophic lateral sclerosis (ALS). METHODS: In this study, using an array of clinical and neuropathological data combined with biochemical and proteomics assays, we analyze the TBK1 splice-mutation (c.1340 + 1G > A) in a Swedish family with a history of FTD and ALS. We also explore the K63 ubiquitination landscape in post-mortem brain tissue and fibroblast cultures. RESULTS: The intronic (c.1340 + 1G > A) mutation in TBK1 results in haploinsufficiency and affects the activity of the protein in symptomatic and pre-symptomatic mutation carriers. CONCLUSION: Our results suggest that the mutation leads to a significant reduction of TBK1 activity and induce alterations in K63 ubiquitination profile of the cell already in the presymptomatic stages.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/diagnóstico , Encéfalo/patología , Fibroblastos , Demencia Frontotemporal/genética , Haploinsuficiencia , Humanos , Mutación , Enfermedades Neurodegenerativas/patología , Proteínas Serina-Treonina Quinasas/genética , Ubiquitinación
5.
Mol Neurodegener ; 16(1): 79, 2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34838088

RESUMEN

BACKGROUND: A detailed understanding of the pathological processes involved in genetic frontotemporal dementia is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected), as well as presymptomatic individuals from mutation non-carriers. METHODS: A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using LASSO and Random forest. RESULTS: When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially important for the separation. Among these, four were identified as most important, namely neurofilament medium polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models, but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified with a potential to contribute to a separation, including progranulin (GRN). CONCLUSION: In conclusion, we have identified several proteins with the combined potential to separate affected individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.


Asunto(s)
Demencia Frontotemporal , Biomarcadores , Encéfalo , Demencia Frontotemporal/genética , Humanos , Mutación/genética , Progranulinas/genética
6.
Acta Neuropathol Commun ; 9(1): 132, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344473

RESUMEN

We identified an autosomal dominant progranulin mutation carrier without symptoms of dementia in her lifetime (Reduced Penetrance Mutation Carrier, RedPenMC). This resistance to develop expected pathology presents a unique opportunity to interrogate neurodegenerative mechanisms. We performed multimodal single-nuclei analyses of post-mortem frontal cortex from RedPenMC, including transcriptomics and global levels of chromatin marks. RedPenMC had an increased ratio of GRN-expressing microglia, higher levels of activating histone mark H3k4me3 in microglia and lower levels of the repressive chromatin marks H3k9me1 and H3k9me3 in the frontal cortex than her affected mutation carrier son and evidence of higher protein levels of progranulin in both plasma and brain homogenates. Although the study is limited to one case, the results support that restoring brain progranulin levels may be sufficient to escape neurodegeneration and FTD. In addition to previously identified modifier genes, it is possible that epigenetic marks may contribute to the increased progranulin expression in cases of reduced penetrance. These findings may stimulate similar follow-up studies and new therapeutic approaches.


Asunto(s)
Cromatina/metabolismo , Lóbulo Frontal/metabolismo , Demencia Frontotemporal/genética , Microglía/metabolismo , Penetrancia , Progranulinas/genética , Anciano de 80 o más Años , Femenino , Lóbulo Frontal/patología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Perfilación de la Expresión Génica , Heterocigoto , Histonas/metabolismo , Humanos , Microglía/patología , Mutación , Progranulinas/metabolismo , Análisis de la Célula Individual
7.
Transl Neurodegener ; 9(1): 27, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576262

RESUMEN

BACKGROUND: The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here, we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation carriers and non-carriers. METHODS: Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with behavioural variant FTD (bvFTD, n = 16) and progressive primary aphasia (PPA, n = 13), as well as presymptomatic mutation carriers (PMC, n = 16) and non-carriers (NC, n = 8). A total of 492 antibodies were used to measure protein levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort including 13 FTD patients, 79 patients with Alzheimer's disease and 18 healthy controls. RESULTS: We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals (PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to unaffected individuals. The main findings were reproduced in the independent cohort. CONCLUSION: In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented here has the potential to enable future clinical utilization of these potential biomarkers within FTD.


Asunto(s)
Proteínas del Líquido Cefalorraquídeo/líquido cefalorraquídeo , Proteínas del Líquido Cefalorraquídeo/genética , Demencia Frontotemporal/líquido cefalorraquídeo , Demencia Frontotemporal/genética , Heterocigoto , Mutación/genética , Adulto , Anciano , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Síntomas Prodrómicos
8.
Lancet Neurol ; 19(2): 145-156, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810826

RESUMEN

BACKGROUND: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. METHODS: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. FINDINGS: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death. INTERPRETATION: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. FUNDING: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.


Asunto(s)
Edad de Inicio , Demencia Frontotemporal/genética , Demencia Frontotemporal/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Progranulinas/genética , Progranulinas/metabolismo , Estudios Retrospectivos , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Ann Clin Transl Neurol ; 6(4): 698-707, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31019994

RESUMEN

OBJECTIVE: To identify novel CSF biomarkers in GRN-associated frontotemporal dementia (FTD) by proteomics using mass spectrometry (MS). METHODS: Unbiased MS was applied to CSF samples from 19 presymptomatic and 9 symptomatic GRN mutation carriers and 24 noncarriers. Protein abundances were compared between these groups. Proteins were then selected for validation if identified by ≥4 peptides and if fold change was ≤0.5 or ≥2.0. Validation and absolute quantification by parallel reaction monitoring (PRM), a high-resolution targeted MS method, was performed on an international cohort (n = 210) of presymptomatic and symptomatic GRN, C9orf72 and MAPT mutation carriers. RESULTS: Unbiased MS revealed 20 differentially abundant proteins between symptomatic mutation carriers and noncarriers and nine between symptomatic and presymptomatic carriers. Seven of these proteins fulfilled our criteria for validation. PRM analyses revealed that symptomatic GRN mutation carriers had significantly lower levels of neuronal pentraxin receptor (NPTXR), receptor-type tyrosine-protein phosphatase N2 (PTPRN2), neurosecretory protein VGF, chromogranin-A (CHGA), and V-set and transmembrane domain-containing protein 2B (VSTM2B) than presymptomatic carriers and noncarriers. Symptomatic C9orf72 mutation carriers had lower levels of NPTXR, PTPRN2, CHGA, and VSTM2B than noncarriers, while symptomatic MAPT mutation carriers had lower levels of NPTXR and CHGA than noncarriers. INTERPRETATION: We identified and validated five novel CSF biomarkers in GRN-associated FTD. Our results show that synaptic, secretory vesicle, and inflammatory proteins are dysregulated in the symptomatic stage and may provide new insights into the pathophysiology of genetic FTD. Further validation is needed to investigate their clinical applicability as diagnostic or monitoring biomarkers.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Demencia Frontotemporal/líquido cefalorraquídeo , Demencia Frontotemporal/genética , Proteómica , Adulto , Anciano , Proteína C9orf72/genética , Estudios de Cohortes , Femenino , Heterocigoto , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Enfermedad de Pick/líquido cefalorraquídeo , Enfermedad de Pick/genética , Proteómica/métodos
10.
Neurobiol Aging ; 84: 241.e21-241.e25, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30992141

RESUMEN

Frontotemporal dementia (FTD) is the second most common early-onset dementia. Up to half of the cases are familial, and several mutations have been identified as pathogenic. Repeat expansion mutations in C9orf72 are the most common genetic cause of FTD and are particularly frequent in Sweden and Finland. We aimed to determine the mutation frequency in patients with FTD ascertained at a memory clinic in Sweden and assess the inheritance pattern in the families. We screened 132 patients with FTD for mutations in C9orf72, GRN, and MAPT, and the frequency was 34.1%. Two novel variations, not previously published, were found; a pathogenic GRN mutation and a MAPT variation in intron 9 that we report as VUS. The likelihood of finding a mutation was highest in patients with a clear family history of dementia or motor neuron disease (76%), but mutations were also found in apparent sporadic cases. This confirms that FTD cohorts from Sweden have a relatively higher risk of an underlying mutation in all risk categories compared with other reported cohorts.


Asunto(s)
Proteína C9orf72/genética , Demencia Frontotemporal/genética , Mutación , Humanos , Porfiria Intermitente Aguda
11.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30739198

RESUMEN

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteinopatías TDP-43/genética , Anciano , Expansión de las Repeticiones de ADN , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Femenino , Lóbulo Frontal/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/inmunología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Antígenos HLA-DQ/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación con Pérdida de Función , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio/genética , Progranulinas/genética , Progranulinas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas/genética , Proteínas/fisiología , ARN Mensajero/biosíntesis , Factores de Riesgo , Análisis de Secuencia de ARN , Sociedades Científicas , Proteinopatías TDP-43/inmunología , Población Blanca/genética
12.
Brain ; 141(10): 2895-2907, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252044

RESUMEN

The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Regulación de la Expresión Génica/genética , Edad de Inicio , Anciano , Islas de CpG , Metilación de ADN , Femenino , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
13.
Ann Clin Transl Neurol ; 5(5): 583-597, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29761121

RESUMEN

OBJECTIVE: To evaluate poly(GP), a dipeptide repeat protein, and neurofilament light chain (NfL) as biomarkers in presymptomatic C9orf72 repeat expansion carriers and patients with C9orf72-associated frontotemporal dementia. Additionally, to investigate the relationship of poly(GP) with indicators of neurodegeneration as measured by NfL and grey matter volume. METHODS: We measured poly(GP) and NfL levels in cerebrospinal fluid (CSF) from 25 presymptomatic C9orf72 expansion carriers, 64 symptomatic expansion carriers with dementia, and 12 noncarriers. We explored associations with grey matter volumes using region of interest and voxel-wise analyses. RESULTS: Poly(GP) was present in C9orf72 expansion carriers and absent in noncarriers (specificity 100%, sensitivity 97%). Presymptomatic carriers had lower poly(GP) levels than symptomatic carriers. NfL levels were higher in symptomatic carriers than in presymptomatic carriers and healthy noncarriers. NfL was highest in patients with concomitant motor neuron disease, and correlated with disease severity and survival. Associations between poly(GP) levels and small grey matter regions emerged but did not survive multiple comparison correction, while higher NfL levels were associated with atrophy in frontotemporoparietal cortices and the thalamus. INTERPRETATION: This study of C9orf72 expansion carriers reveals that: (1) poly(GP) levels discriminate presymptomatic and symptomatic expansion carriers from noncarriers, but are not associated with indicators of neurodegeneration; and (2) NfL levels are associated with grey matter atrophy, disease severity, and shorter survival. Together, poly(GP) and NfL show promise as complementary biomarkers for clinical trials for C9orf72-associated frontotemporal dementia, with poly(GP) as a potential marker for target engagement and NfL as a marker of disease activity and progression.

14.
Ann Clin Transl Neurol ; 3(8): 623-36, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27606344

RESUMEN

OBJECTIVE: To evaluate cerebrospinal fluid (CSF) and serum neurofilament light chain (NfL) levels in genetic frontotemporal dementia (FTD) as a potential biomarker in the presymptomatic stage and during the conversion into the symptomatic stage. Additionally, to correlate NfL levels to clinical and neuroimaging parameters. METHODS: In this multicenter case-control study, we investigated CSF NfL in 174 subjects (48 controls, 40 presymptomatic carriers and 86 patients with microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading frame 72 (C9orf72) mutations), and serum NfL in 118 subjects (39 controls, 44 presymptomatic carriers, 35 patients). In 55 subjects both CSF and serum was determined. In two subjects CSF was available before and after symptom onset (converters). Additionally, NfL levels were correlated with clinical parameters, survival, and regional brain atrophy. RESULTS: CSF NfL levels in patients (median 6762 pg/mL, interquartile range 3186-9309 pg/mL) were strongly elevated compared with presymptomatic carriers (804 pg/mL, 627-1173 pg/mL, P < 0.001), resulting in a good diagnostic performance to discriminate both groups. Serum NfL correlated highly with CSF NfL (r s = 0.87, P < 0.001) and was similarly elevated in patients. Longitudinal samples in the converters showed a three- to fourfold increase in CSF NfL after disease onset. Additionally, NfL levels in patients correlated with disease severity, brain atrophy, annualized brain atrophy rate and survival. INTERPRETATION: NfL in both serum and CSF has the potential to serve as a biomarker for clinical disease onset and has a prognostic value in genetic FTD.

15.
J Clin Med ; 3(1): 167-75, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26237255

RESUMEN

It has now been over 50 years since it was discovered that Down syndrome is caused by an extra chromosome 21, i.e., trisomy 21. In the interim, it has become clear that in the majority of cases, the extra chromosome is inherited from the mother, and there is, in this respect, a strong maternal age effect. Numerous investigations have been devoted to clarifying the underlying mechanism, most recently suggesting that this situation is exceedingly complex, involving both biological and environmental factors. On the other hand, it has also been proposed that germinal trisomy 21 mosaicism, arising during the very early stages of maternal oogenesis with accumulation of trisomy 21 germ cells during subsequent development, may be the main predisposing factor. We present data here on the incidence of trisomy 21 mosaicism in a cohort of normal fetal ovarian samples, indicating that an accumulation of trisomy 21 germ cells does indeed take place during fetal oogenesis, i.e., from the first to the second trimester of pregnancy. We presume that this accumulation of trisomy 21 (T21) cells is caused by their delay in maturation and lagging behind the normal cells. We further presume that this trend continues during the third trimester of pregnancy and postnatally, up until ovulation, thereby explaining the maternal age effect in Down syndrome.

16.
Eur J Hum Genet ; 21(11): 1260-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23463024

RESUMEN

Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease with an age at onset generally below 65 years. Mutations in progranulin (GRN) have been reported to be able to cause FTLD through haploinsufficiency. We have sequenced GRN in 121 patients with FTLD and detected six different mutations in eight patients: p.Gly35Glufs*19, p.Asn118Phefs*4, p.Val200Glyfs*18, p.Tyr294*, p.Cys404* and p.Cys416Leufs*30. Serum was available for five of the mutations, where the serum-GRN levels were found to be >50% reduced compared with FTLD patients without GRN mutations. Moreover, the p.Cys416Leufs*30 mutation segregated in an affected family with different dementia diagnoses. The mutation frequency of GRN mutation was 6.6% in our FTLD cohort.


Asunto(s)
Degeneración Lobar Frontotemporal/sangre , Degeneración Lobar Frontotemporal/genética , Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Corteza Cerebral/patología , Estudios de Cohortes , Proteínas de Unión al ADN/metabolismo , Familia , Degeneración Lobar Frontotemporal/patología , Humanos , Inmunohistoquímica , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Progranulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...