Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(3): 286-295, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36747092

RESUMEN

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that binds DNA and assembles co-regulator complexes to regulate gene transcription. GR agonists are widely prescribed to people with inflammatory and autoimmune diseases. Here we present high-resolution, multidomain structures of GR in complex with ligand, DNA and co-regulator peptide. The structures reveal how the receptor forms an asymmetric dimer on the DNA and provide a detailed view of the domain interactions within and across the two monomers. Hydrogen-deuterium exchange and DNA-binding experiments demonstrate that ligand-dependent structural changes are communicated across the different domains in the full-length receptor. This study demonstrates how GR forms a distinct architecture on DNA and how signal transmission can be modulated by the ligand pharmacophore, provides a platform to build a new level of understanding of how receptor modifications can drive disease progression and offers key insight for future drug design.


Asunto(s)
Receptores de Glucocorticoides , Factores de Transcripción , Humanos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ligandos , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , ADN/metabolismo
2.
ACS Synth Biol ; 11(7): 2229-2237, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797032

RESUMEN

Rapid and flexible plasmid construct generation at scale is one of the most limiting first steps in drug discovery projects. These hurdles can partly be overcome by adopting modular DNA design principles, automated sequence fragmentation, and plasmid assembly. To this end we have designed a robust, multimodule golden gate based cloning platform for construct generation with a wide range of applications. The assembly efficiency of the system was validated by splitting sfGFP and sfCherry3C cassettes and expressing them in E. coli followed by fluorometric assessment. To minimize timelines and cost for complex constructs, we developed a software tool named FRAGLER (FRAGment recycLER) that performs codon optimization, multiple sequence alignment, and automated generation of fragments for recycling. To highlight the flexibility and robustness of the platform, we (i) generated plasmids for SarsCoV2 protein reagents, (ii) automated and parallelized assemblies, and (iii) built modular libraries of chimeric antigen receptors (CARs) variants. Applying the new assembly framework, we have greatly streamlined plasmid construction and increased our capacity for rapid generation of complex plasmids.


Asunto(s)
COVID-19 , Escherichia coli , Clonación Molecular , ADN/genética , Escherichia coli/genética , Vectores Genéticos , Humanos , Plásmidos/genética , ARN Viral , SARS-CoV-2 , Biología Sintética
3.
PLoS Genet ; 17(1): e1008951, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33428620

RESUMEN

70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70's in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this 'defect' of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Longevidad/genética , Proteínas de Saccharomyces cerevisiae/genética , Citosol/metabolismo , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Mutación/genética , Pliegue de Proteína , Saccharomyces cerevisiae/genética
4.
Cell ; 177(3): 782-796.e27, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955892

RESUMEN

G protein-coupled receptor (GPCR) signaling is the primary method eukaryotes use to respond to specific cues in their environment. However, the relationship between stimulus and response for each GPCR is difficult to predict due to diversity in natural signal transduction architecture and expression. Using genome engineering in yeast, we constructed an insulated, modular GPCR signal transduction system to study how the response to stimuli can be predictably tuned using synthetic tools. We delineated the contributions of a minimal set of key components via computational and experimental refactoring, identifying simple design principles for rationally tuning the dose response. Using five different GPCRs, we demonstrate how this enables cells and consortia to be engineered to respond to desired concentrations of peptides, metabolites, and hormones relevant to human health. This work enables rational tuning of cell sensing while providing a framework to guide reprogramming of GPCR-based signaling in other systems.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Expresión Génica/efectos de los fármacos , Ingeniería Genética , Humanos , Feromonas/farmacología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
ACS Synth Biol ; 7(9): 2317-2321, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30114904

RESUMEN

Site saturation mutagenesis (SSM) is a powerful mutagenesis strategy for protein engineering and directed evolution experiments. However, limiting factors using this method are either biased representation of variants, or limiting library size. To overcome these hurdles, we generated large scale targeted synthetic SSM libraries using massively parallel oligonucleotide synthesis and benchmarked this against an error-prone (epPCR) library. The yeast glucose activated GPCR-Gpr1 was chosen as a prototype to evolve novel glucose sensors. We demonstrate superior variant representation and several unique hits in the synthetic library compared to the PCR generated library. Application of this mutational approach further builds the possibilities of synthetic biology in tuning of a response to known ligands and in generating biosensors for novel ligands.


Asunto(s)
Glucosa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Biblioteca de Genes , Glucosa/farmacología , Mutagénesis Sitio-Dirigida , Receptores Acoplados a Proteínas G/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Regulación hacia Arriba/efectos de los fármacos , beta-Fructofuranosidasa/genética
6.
Mol Biol Cell ; 25(12): 1916-24, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24760971

RESUMEN

Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.


Asunto(s)
ADN Ribosómico/genética , Endopeptidasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/genética , Intercambio Genético , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Silenciador del Gen , Heterocromatina/enzimología , Heterocromatina/genética , Proteínas Nucleares/metabolismo , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo
7.
EMBO J ; 33(7): 747-61, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24596250

RESUMEN

The interplay between molecular chaperones, ubiquitin/deubiquitinating enzymes, and proteasomes is a critical element in protein homeostasis. Among these factors, the conserved deubiquitinase, Ubp3, has the interesting ability, when overproduced, to suppress the requirement for the major cytosolic Hsp70 chaperones. Here, we show that Ubp3 overproduction counteracts deficiency of Hsp70s by the removal of damaged proteins deposited in inclusion bodies (JUNQ) during both aging and heat stress. Consistent with this, Ubp3 destabilized, deubiquitinated, and diminished the toxicity of the JUNQ-associated misfolded protein Ubc9(ts) in a proteasome-dependent manner. In contrast, another misfolded model protein, ssCPY*, was stabilized by Ubp3-dependent deubiquitination demonstrating a dual role for Ubp3, saving or destroying aberrant protein species depending on the stage at which the damaged protein is committed for destruction. We present genetic evidence for the former of these activities being key to Ubp3-dependent suppression of heat sensitivity in Hsp70-deficient cells, whereas protein destruction suppresses accelerated aging. We discuss the data in view of how heat stress and aging might elicit differential damage and challenges on the protein homeostasis network.


Asunto(s)
Endopeptidasas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Cuerpos de Inclusión/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Citoplasma/metabolismo , Endopeptidasas/genética , Genes Reporteros , Proteínas HSP70 de Choque Térmico/genética , Calor/efectos adversos , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Factores de Tiempo , Ubiquitina/metabolismo
9.
Mol Cell ; 42(3): 390-400, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21549315

RESUMEN

Altered mitochondrial functionality can extend organism life span, but the underlying mechanisms are obscure. Here we report that inactivating SOV1, a member of the yeast mitochondrial translation control (MTC) module, causes a robust Sir2-dependent extension of replicative life span in the absence of respiration and without affecting oxidative damage. We found that SOV1 interacts genetically with the cAMP-PKA pathway and the chromatin remodeling apparatus. Consistently, Sov1p-deficient cells displayed reduced cAMP-PKA signaling and an elevated, Sir2p-dependent, genomic silencing. Both increased silencing and life span extension in sov1Δ cells require the PKA/Msn2/4p target Pnc1p, which scavenges nicotinamide, a Sir2p inhibitor. Inactivating other members of the MTC module also resulted in Sir2p-dependent life span extension. The data demonstrate that the nuclear silencing apparatus senses and responds to the absence of MTC proteins and that this response converges with a pathway for life span extension elicited by reducing TOR signaling.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Western Blotting , División Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Proteínas Mitocondriales/metabolismo , Mutación , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Tiempo , Factores de Transcripción
10.
Cell ; 140(2): 257-67, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20141839

RESUMEN

The paradigm sirtuin, Sir2p, of budding yeast is required for establishing cellular age asymmetry, which includes the retention of damaged and aggregated proteins in mother cells. By establishing the global genetic interaction network of SIR2 we identified the polarisome, the formin Bni1p, and myosin motor protein Myo2p as essential components of the machinery segregating protein aggregates during mitotic cytokinesis. Moreover, we found that daughter cells can clear themselves of damage by a polarisome- and tropomyosin-dependent polarized flow of aggregates into the mother cell compartment. The role of Sir2p in cytoskeletal functions and polarity is linked to the CCT chaperonin in sir2Delta cells being compromised in folding actin. We discuss the findings in view of recent models hypothesizing that polarity may have evolved to avoid clonal senescence by establishing an aging (soma-like) and rejuvenated (germ-like) lineage.


Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Microfilamentos/metabolismo , Mitosis , Orgánulos/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...