Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(7): eadj8083, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363837

RESUMEN

Netrins dictate attractive and repulsive responses during axon growth and cell migration, where the presence of the receptor Uncoordinated-5 (UNC-5) on target cells results in repulsion. Here, we showed that UNC-5 is a heparin-binding protein, determined its structure bound to a heparin fragment, and could modulate UNC-5-heparin affinity using a directed evolution platform or structure-based rational design. We demonstrated that UNC-5 and UNC-6/netrin form a large, stable, and rigid complex in the presence of heparin, and heparin and UNC-5 exclude the attractive UNC-40/DCC receptor from binding to UNC-6/netrin to a large extent. Caenorhabditis elegans with a heparin-binding-deficient UNC-5 fail to establish proper gonad morphology due to abrogated cell migration, which relies on repulsive UNC-5 signaling in response to UNC-6. Combining UNC-5 mutations targeting heparin and UNC-6/netrin contacts results in complete cell migration and axon guidance defects. Our findings establish repulsive netrin responses to be mediated through a glycosaminoglycan-regulated macromolecular complex.


Asunto(s)
Axones , Proteínas de Caenorhabditis elegans , Animales , Netrinas/metabolismo , Axones/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Caenorhabditis elegans/metabolismo , Heparina , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Moléculas de Adhesión Celular/genética
2.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38233143

RESUMEN

The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Drosophila , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo
3.
bioRxiv ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398498

RESUMEN

Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members - Punc, Nope, and Protogenin - for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring. One-Sentence Summary: WFIKKN2 is a ligand for the DCC family receptors Punc, Nope, and Prtg that repels sensory axons and attracts motor axons.

4.
EMBO Mol Med ; 15(5): e17078, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066513

RESUMEN

Somatic and germline gain-of-function point mutations in RAF, one of the first oncogenes to be discovered in humans, delineate a group of tumor-prone syndromes known as the RASopathies. In this study, we document the first human phenotype resulting from the germline loss-of-function of the proto-oncogene RAF1 (a.k.a. CRAF). In a consanguineous family, we uncovered a homozygous p.Thr543Met variant segregating with a neonatal lethal syndrome with cutaneous, craniofacial, cardiac, and limb anomalies. Structure-based prediction and functional tests using human knock-in cells showed that threonine 543 is essential to: (i) ensure RAF1's stability and phosphorylation, (ii) maintain its kinase activity toward substrates of the MAPK pathway, and (iii) protect from stress-induced apoptosis mediated by ASK1. In Xenopus embryos, mutant RAF1T543M failed to phenocopy the effects of normal and overactive FGF/MAPK signaling, confirming its hypomorphic activity. Collectively, our data disclose the genetic and molecular etiology of a novel lethal syndrome with progeroid features, highlighting the importance of RTK signaling for human development and homeostasis.


Asunto(s)
Síndrome de Noonan , Proteínas Tirosina Quinasas Receptoras , Humanos , Recién Nacido , Desarrollo Embrionario/genética , Corazón , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Xenopus laevis/genética
5.
Dev Dyn ; 252(1): 27-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35727136

RESUMEN

One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.


Asunto(s)
Axones , Neuronas , Animales , Ligandos , Axones/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Neurogénesis
6.
Nature ; 609(7925): 128-135, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978188

RESUMEN

Neurons are highly polarized cells that face the fundamental challenge of compartmentalizing a vast and diverse repertoire of proteins in order to function properly1. The axon initial segment (AIS) is a specialized domain that separates a neuron's morphologically, biochemically and functionally distinct axon and dendrite compartments2,3. How the AIS maintains polarity between these compartments is not fully understood. Here we find that in Caenorhabditis elegans, mouse, rat and human neurons, dendritically and axonally polarized transmembrane proteins are recognized by endocytic machinery in the AIS, robustly endocytosed and targeted to late endosomes for degradation. Forcing receptor interaction with the AIS master organizer, ankyrinG, antagonizes receptor endocytosis in the AIS, causes receptor accumulation in the AIS, and leads to polarity deficits with subsequent morphological and behavioural defects. Therefore, endocytic removal of polarized receptors that diffuse into the AIS serves as a membrane-clearance mechanism that is likely to work in conjunction with the known AIS diffusion-barrier mechanism to maintain neuronal polarity on the plasma membrane. Our results reveal a conserved endocytic clearance mechanism in the AIS to maintain neuronal polarity by reinforcing axonal and dendritic compartment membrane boundaries.


Asunto(s)
Segmento Inicial del Axón , Polaridad Celular , Endocitosis , Animales , Segmento Inicial del Axón/metabolismo , Caenorhabditis elegans , Membrana Celular/metabolismo , Dendritas/metabolismo , Difusión , Endosomas/metabolismo , Humanos , Ratones , Transporte de Proteínas , Proteolisis , Ratas , Receptores de Superficie Celular/metabolismo
7.
Cell Rep ; 37(5): 109940, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731636

RESUMEN

Projections from sensory neurons of olfactory systems coalesce into glomeruli in the brain. The Kirrel receptors are believed to homodimerize via their ectodomains and help separate sensory neuron axons into Kirrel2- or Kirrel3-expressing glomeruli. Here, we present the crystal structures of homodimeric Kirrel receptors and show that the closely related Kirrel2 and Kirrel3 have evolved specific sets of polar and hydrophobic interactions, respectively, disallowing heterodimerization while preserving homodimerization, likely resulting in proper segregation and coalescence of Kirrel-expressing axons into glomeruli. We show that the dimerization interface at the N-terminal immunoglobulin (IG) domains is necessary and sufficient to create homodimers and fail to find evidence for a secondary interaction site in Kirrel ectodomains. Furthermore, we show that abolishing dimerization of Kirrel3 in vivo leads to improper formation of glomeruli in the mouse accessory olfactory bulb as observed in Kirrel3-/- animals. Our results provide evidence for Kirrel3 homodimerization controlling axonal coalescence.


Asunto(s)
Axones/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Olfato , Órgano Vomeronasal/metabolismo , Animales , Evolución Molecular , Células HEK293 , Humanos , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Mutación , Odorantes , Filogenia , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores Odorantes/genética , Transducción de Señal , Relación Estructura-Actividad
8.
Structure ; 28(5): 492-494, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375057

RESUMEN

In this issue of Structure, Rozbesky et al. (2020) report evidence for direct molecular interactions between Drosophila OTK with Sema1a and glycosaminoglycans, providing insights for OTK's mode of action in axon guidance and possibly in Wnt signaling.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Axones , Proteínas Portadoras , Glicosaminoglicanos
9.
Nat Commun ; 11(1): 1489, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198364

RESUMEN

Axon pathfinding is critical for nervous system development, and it is orchestrated by molecular cues that activate receptors on the axonal growth cone. Robo family receptors bind Slit guidance cues to mediate axon repulsion. In mammals, the divergent family member Robo3 does not bind Slits, but instead signals axon repulsion from its own ligand, NELL2. Conversely, canonical Robos do not mediate NELL2 signaling. Here, we present the structures of NELL-Robo3 complexes, identifying a mode of ligand engagement for Robos that is orthogonal to Slit binding. We elucidate the structural basis for differential binding between NELL and Robo family members and show that NELL2 repulsive activity is a function of its Robo3 affinity and is enhanced by ligand trimerization. Our results reveal a mechanism of oligomerization-induced Robo activation for axon guidance and shed light on Robo family member ligand binding specificity, conformational variability, divergent modes of signaling, and evolution.


Asunto(s)
Orientación del Axón/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Animales , Axones/metabolismo , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Drosophila , Proteínas de Drosophila/metabolismo , Mamíferos , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Dispersión de Radiación , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 116(20): 9837-9842, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31043568

RESUMEN

The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.


Asunto(s)
Evolución Biológica , Inmunoglobulinas , Invertebrados/genética , Sistema Nervioso , Animales , Dimerización , Drosophila melanogaster , Familia de Multigenes , Conformación Proteica
11.
Structure ; 27(6): 893-906.e9, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30956130

RESUMEN

In the developing brain, cell-surface proteins play crucial roles, but their protein-protein interaction network remains largely unknown. A proteomic screen identified 200 interactions, 89 of which were not previously published. Among these interactions, we find that the IgLONs, a family of five cell-surface neuronal proteins implicated in various human disorders, interact as homo- and heterodimers. We reveal their interaction patterns and report the dimeric crystal structures of Neurotrimin (NTRI), IgLON5, and the neuronal growth regulator 1 (NEGR1)/IgLON5 complex. We show that IgLONs maintain an extended conformation and that their dimerization occurs through the first Ig domain of each monomer and is Ca2+ independent. Cell aggregation shows that NTRI and NEGR1 homo- and heterodimerize in trans. Taken together, we report 89 unpublished cell-surface ligand-receptor pairs and describe structural models of trans interactions of IgLONs, showing that their structures are compatible with a model of interaction across the synaptic cleft.


Asunto(s)
Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Ligandos , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido
12.
Curr Biol ; 29(6): 908-920.e6, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30827914

RESUMEN

Collective migration of epithelial cells is essential for morphogenesis, wound repair, and the spread of many cancers, yet how individual cells signal to one another to coordinate their movements is largely unknown. Here, we introduce a tissue-autonomous paradigm for semaphorin-based regulation of collective cell migration. Semaphorins typically regulate the motility of neuronal growth cones and other migrating cell types by acting as repulsive cues within the migratory environment. Studying the follicular epithelial cells of Drosophila, we discovered that the transmembrane semaphorin, Sema-5c, promotes collective cell migration by acting within the migrating cells themselves, not the surrounding environment. Sema-5c is planar polarized at the basal epithelial surface such that it is enriched at the leading edge of each cell. This location places it in a prime position to send a repulsive signal to the trailing edge of the cell ahead to communicate directional information between neighboring cells. Our data show that Sema-5c can signal across cell-cell boundaries to suppress protrusions in neighboring cells and that Plexin A is the receptor that transduces this signal. Finally, we present evidence that Sema-5c antagonizes the activity of Lar, another transmembrane guidance cue that operates along leading-trailing cell-cell interfaces in this tissue, via a mechanism that appears to be independent of Plexin A. Together, our results suggest that multiple transmembrane guidance cues can be deployed in a planar-polarized manner across an epithelium and work in concert to coordinate individual cell movements for collective migration.


Asunto(s)
Movimiento Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Células Epiteliales/fisiología , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Receptores de Superficie Celular/genética , Semaforinas/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo
13.
Elife ; 82019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30688651

RESUMEN

In stereotyped neuronal networks, synaptic connectivity is dictated by cell surface proteins, which assign unique identities to neurons, and physically mediate axon guidance and synapse targeting. We recently identified two groups of immunoglobulin superfamily proteins in Drosophila, Dprs and DIPs, as strong candidates for synapse targeting functions. Here, we uncover the molecular basis of specificity in Dpr-DIP mediated cellular adhesions and neuronal connectivity. First, we present five crystal structures of Dpr-DIP and DIP-DIP complexes, highlighting the evolutionary and structural origins of diversification in Dpr and DIP proteins and their interactions. We further show that structures can be used to rationally engineer receptors with novel specificities or modified affinities, which can be used to study specific circuits that require Dpr-DIP interactions to help establish connectivity. We investigate one pair, engineered Dpr10 and DIP-α, for function in the neuromuscular circuit in flies, and reveal roles for homophilic and heterophilic binding in wiring.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Inmunoglobulinas/metabolismo , Receptores de Superficie Celular/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Cristalografía por Rayos X , Proteínas de Drosophila/química , Inmunoglobulinas/química , Filogenia , Unión Proteica , Multimerización de Proteína , Receptores de Superficie Celular/química , Homología Estructural de Proteína
14.
Elife ; 62017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28829740

RESUMEN

An 'interactome' screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we 'deorphanized' four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/genética , Neuronas Motoras/metabolismo , Músculos/metabolismo , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/metabolismo , Animales , Anticuerpos/química , Bioensayo , Biología Computacional , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Embrión no Mamífero , Colorantes Fluorescentes/química , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/ultraestructura , Proteínas de la Membrana/metabolismo , Neuronas Motoras/ultraestructura , Músculos/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/ultraestructura , Ficoeritrina/química , Filogenia , Mapeo de Interacción de Proteínas/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal
15.
Curr Opin Neurobiol ; 45: 99-105, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28558267

RESUMEN

The immunoglobulin superfamily (IgSF) encompasses hundreds of cell surface proteins containing multiple immunoglobulin-like (Ig) domains. Among these are neural IgCAMs, which are cell adhesion molecules that mediate interactions between cells in the nervous system. IgCAMs in some vertebrate IgSF subfamilies bind to each other homophilically and heterophilically, forming small interaction networks. In Drosophila, a global 'interactome' screen identified two larger networks in which proteins in one IgSF subfamily selectively interact with proteins in a different subfamily. One of these networks, the 'Dpr-ome', includes 30 IgSF proteins, each of which is expressed in a unique subset of neurons. Recent evidence shows that one interacting protein pair within the Dpr-ome network is required for development of the brain and neuromuscular system.


Asunto(s)
Drosophila/fisiología , Inmunoglobulinas/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo
16.
Structure ; 24(12): 2163-2173, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926833

RESUMEN

Synaptic specificity is a defining property of neural networks. In the cerebellum, synapses between parallel fiber neurons and Purkinje cells are specified by the simultaneous interactions of secreted protein cerebellin with pre-synaptic neurexin and post-synaptic delta-type glutamate receptors (GluD). Here, we determined the crystal structures of the trimeric C1q-like domain of rat cerebellin-1, and the first complete ectodomain of a GluD, rat GluD2. Cerebellin binds to the LNS6 domain of α- and ß-neurexin-1 through a high-affinity interaction that involves its highly flexible N-terminal domain. In contrast, we show that the interaction of cerebellin with isolated GluD2 ectodomain is low affinity, which is not simply an outcome of lost avidity when compared with binding with a tetrameric full-length receptor. Rather, high-affinity capture of cerebellin by post-synaptic terminals is likely controlled by long-distance regulation within this transsynaptic complex. Altogether, our results suggest unusual conformational flexibility within all components of the complex.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Ratas
17.
Elife ; 52016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26974341

RESUMEN

Extracellular adhesion molecules and their neuronal receptors guide the growth and branching of axons and dendrites. Growth cones are attracted to intermediate targets, but they must switch their response upon arrival so that they can move away and complete the next stage of growth. Here, we show that KPC-1, a C. elegans Furin homolog, regulates the level of the branching receptor DMA-1 on dendrites by targeting it to late endosomes. In kpc-1 mutants, the level of DMA-1 is abnormally high on dendrites, resulting in trapping of dendrites at locations where a high level of the cognate ligand, the adhesion molecule SAX-7/L1, is present. The misregulation of DMA-1 also causes dendritic self-avoidance defects. Thus, precise regulation of guidance receptors creates flexibility of responses to guidance signals and is critical for neuronal morphogenesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Dendritas/fisiología , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proproteína Convertasas/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Técnicas de Inactivación de Genes , Morfogénesis , Proproteína Convertasas/genética
18.
Cell ; 163(7): 1770-1782, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687361

RESUMEN

We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a nine-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the six dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Sinapsis , Secuencia de Aminoácidos , Animales , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/química , Larva/metabolismo , Modelos Moleculares , Familia de Multigenes , Mapas de Interacción de Proteínas , Alineación de Secuencia
19.
Proc Natl Acad Sci U S A ; 112(36): 11252-7, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305957

RESUMEN

The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1-Mad2 core complex. In mitosis, kinetochore-bound Mad1-C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. Here, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2. Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2-binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2-C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2.


Asunto(s)
Proteínas Mad2/química , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Sitios de Unión/genética , Calorimetría , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Cristalografía por Rayos X , Humanos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Espectroscopía de Resonancia Magnética , Mitosis , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína
20.
Neuron ; 86(6): 1420-32, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26028574

RESUMEN

At synapses, the presynaptic release machinery is precisely juxtaposed to the postsynaptic neurotransmitter receptors. We studied the molecular mechanisms underlying this exquisite alignment at the C. elegans inhibitory synapses. We found that the sole C. elegans neuroligin homolog, NLG-1, localizes specifically at GABAergic postsynapses and is required for clustering the GABA(A) receptor UNC-49. Two presynaptic factors, Punctin/MADD-4, an ADAMTS-like extracellular protein, and neurexin/NRX-1, act partially redundantly to recruit NLG-1 to synapses. In the absence of both MADD-4 and NRX-1, NLG-1 and GABA(A) receptors fail to cluster, and GABAergic synaptic transmission is severely compromised. Biochemically, we detect an interaction between MADD-4 and NLG-1, as well as between MADD-4 and NRX-1. Interestingly, the presence of NRX-1 potentiates binding between Punctin/MADD-4 and NLG-1, suggestive of a tripartite receptor ligand complex. We propose that presynaptic terminals induce postsynaptic receptor clustering through the action of both secreted ECM proteins and trans-synaptic adhesion complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Neuronas GABAérgicas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/fisiología , Receptores de GABA-A/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular Neuronal/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Receptores de GABA-A/genética , Transmisión Sináptica/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...