Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(4): e2200570, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36603162

RESUMEN

In the search for small-molecule aldose reductase (AR) inhibitors, new tetrazole-hydrazone hybrids (1-15) were designed. An efficient procedure was employed for the synthesis of compounds 1-15. All hydrazones were subjected to an in vitro assay to assess their AR inhibitory profiles. Compounds 1-15 caused AR inhibition with Ki values ranging between 0.177 and 6.322 µM and IC50 values ranging between 0.210 and 0.676 µM. 2-[(1-(4-Hydroxyphenyl)-1H-tetrazol-5-yl)thio]-N'-(4-fluorobenzylidene)acetohydrazide (4) was the most potent inhibitor of AR in this series. Compound 4 markedly inhibited AR (IC50 = 0.297 µM) in a competitive manner (Ki = 0.177 µM) compared to epalrestat (Ki = 0.857 µM, IC50 = 0.267 µM). Based on the in vitro data obtained by applying the MTT test, compound 4 showed no cytotoxic activity toward normal (NIH/3T3) cells at the tested concentrations, indicating its safety as an AR inhibitor. Compound 4 exhibited proper interactions with crucial amino acid residues within the active site of AR. In silico QikProp data of all hydrazones (1-15) were also determined to assess their pharmacokinetic profiles. Taken together, compound 4 stands out as a promising inhibitor of AR for further in vivo studies.


Asunto(s)
Aldehído Reductasa , Hidrazonas , Hidrazonas/farmacología , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Aminoácidos , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA