Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 3: 10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25750913

RESUMEN

Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth.

2.
Proc Natl Acad Sci U S A ; 109(19): 7571-6, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22523240

RESUMEN

The hormone gibberellin (GA) is a key regulator of plant growth. Many of the components of the gibberellin signal transduction [e.g., GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA], biosynthesis [e.g., GA 20-oxidase (GA20ox) and GA3ox], and deactivation pathways have been identified. Gibberellin binds its receptor, GID1, to form a complex that mediates the degradation of DELLA proteins. In this way, gibberellin relieves DELLA-dependent growth repression. However, gibberellin regulates expression of GID1, GA20ox, and GA3ox, and there is also evidence that it regulates DELLA expression. In this paper, we use integrated mathematical modeling and experiments to understand how these feedback loops interact to control gibberellin signaling. Model simulations are in good agreement with in vitro data on the signal transduction and biosynthesis pathways and in vivo data on the expression levels of gibberellin-responsive genes. We find that GA-GID1 interactions are characterized by two timescales (because of a lid on GID1 that can open and close slowly relative to GA-GID1 binding and dissociation). Furthermore, the model accurately predicts the response to exogenous gibberellin after a number of chemical and genetic perturbations. Finally, we investigate the role of the various feedback loops in gibberellin signaling. We find that regulation of GA20ox transcription plays a significant role in both modulating the level of endogenous gibberellin and generating overshoots after the removal of exogenous gibberellin. Moreover, although the contribution of other individual feedback loops seems relatively small, GID1 and DELLA transcriptional regulation acts synergistically with GA20ox feedback.


Asunto(s)
Algoritmos , Giberelinas/metabolismo , Modelos Genéticos , Transcripción Genética/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transcripción Genética/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 109(19): 7577-82, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22523244

RESUMEN

In the elongation zone of the Arabidopsis thaliana plant root, cells undergo rapid elongation, increasing their length by ∼10-fold over 5 h while maintaining a constant radius. Although progress is being made in understanding how this growth is regulated, little consideration has been given as to how cell elongation affects the distribution of the key regulating hormones. Using a multiscale mathematical model and measurements of growth dynamics, we investigate the distribution of the hormone gibberellin in the root elongation zone. The model quantifies how rapid cell expansion causes gibberellin to dilute, creating a significant gradient in gibberellin levels. By incorporating the gibberellin signaling network, we simulate how gibberellin dilution affects the downstream components, including the growth-repressing DELLA proteins. We predict a gradient in DELLA that provides an explanation of the reduction in growth exhibited as cells move toward the end of the elongation zone. These results are validated at the molecular level by comparing predicted mRNA levels with transcriptomic data. To explore the dynamics further, we simulate perturbed systems in which gibberellin levels are reduced, considering both genetically modified and chemically treated roots. By modeling these cases, we predict how these perturbations affect gibberellin and DELLA levels and thereby provide insight into their altered growth dynamics.


Asunto(s)
Arabidopsis/metabolismo , Aumento de la Célula , Giberelinas/metabolismo , Raíces de Plantas/metabolismo , Algoritmos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cinética , Modelos Biológicos , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Tiempo , Transcriptoma/genética
4.
Trends Plant Sci ; 17(6): 326-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22401844

RESUMEN

To date, plant researchers have probed the control of root growth by studying the roles of individual regulatory components or cellular processes. However, recent studies in the Arabidopsis (Arabidopsis thaliana) root have shown that different hormones control organ growth by regulating specific growth processes (cell proliferation, differentiation or expansion) in distinct tissues. We discuss key issues raised by these new insights and hypothesise that novel tissue-to-tissue signals exist to coordinate organ growth. We conclude by describing how multiscale models can help probe the interplay between the different scales at which hormones and their regulatory networks operate in different cells and tissues. Such approaches promise to generate new insights into the mechanisms that control root growth.


Asunto(s)
Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Especificidad de Órganos/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo
5.
Plant Methods ; 8: 7, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385537

RESUMEN

BACKGROUND: The ability to quantify the geometry of plant organs at the cellular scale can provide novel insights into their structural organization. Hitherto manual methods of measurement provide only very low throughput and subjective solutions, and often quantitative measurements are neglected in favour of a simple cell count. RESULTS: We present a tool to count and measure individual neighbouring cells along a defined file in confocal laser scanning microscope images. The tool allows the user to extract this generic information in a flexible and intuitive manner, and builds on the raw data to detect a significant change in cell length along the file. This facility can be used, for example, to provide an estimate of the position of transition into the elongation zone of an Arabidopsis root, traditionally a location sensitive to the subjectivity of the experimenter. CONCLUSIONS: Cell-o-tape is shown to locate cell walls with a high degree of accuracy and estimate the location of the transition feature point in good agreement with human experts. The tool is an open source ImageJ/Fiji macro and is available online.

6.
Development ; 138(5): 839-48, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21270053

RESUMEN

Multiple small molecule hormones contribute to growth promotion or restriction in plants. Brassinosteroids (BRs), acting specifically in the epidermis, can both drive and restrict shoot growth. However, our knowledge of how BRs affect meristem size is scant. Here, we study the root meristem and show that BRs are required to maintain normal cell cycle activity and cell expansion. These two processes ensure the coherent gradient of cell progression, from the apical to the basal meristem. In addition, BR activity in the meristem is not accompanied by changes in the expression level of the auxin efflux carriers PIN1, PIN3 and PIN7, which are known to control the extent of mitotic activity and differentiation. We further demonstrate that BR signaling in the root epidermis and not in the inner endodermis, quiescent center (QC) cells or stele cell files is sufficient to control root meristem size. Interestingly, expression of the QC and the stele-enriched MADS-BOX gene AGL42 can be modulated by BRI1 activity solely in the epidermis. The signal from the epidermis is probably transmitted by a different component than BES1 and BZR1 transcription factors, as their direct targets, such as DWF4 and BRox2, are regulated in the same cells that express BRI1. Taken together, our study provides novel insights into the role of BRs in controlling meristem size.


Asunto(s)
Colestanoles/metabolismo , Meristema/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas , Esteroides Heterocíclicos/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Brasinoesteroides , Ciclo Celular , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Fitosteroles , Transducción de Señal
7.
Curr Biol ; 20(12): R511-3, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20620902

RESUMEN

How do plants determine the number of dividing cells required to optimise root growth and ensure seedling establishment? The signals auxin, cytokinin and gibberellin control the balance between cell division and differentiation by regulating SHY2.


Asunto(s)
Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo
8.
Curr Biol ; 19(14): 1194-9, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19576770

RESUMEN

Plant growth is driven by cell proliferation and elongation. The hormone gibberellin (GA) regulates Arabidopsis root growth by controlling cell elongation, but it is currently unknown whether GA also controls root cell proliferation. Here we show that GA biosynthetic mutants are unable to increase their cell production rate and meristem size after germination. GA signals the degradation of the DELLA growth repressor proteins GAI and RGA, promoting root cell production. Targeting the expression of gai (a non-GA-degradable mutant form of GAI) in the root meristem disrupts cell proliferation. Moreover, expressing gai in dividing endodermal cells was sufficient to block root meristem enlargement. We report a novel function for GA regulating cell proliferation where this signal acts by removing DELLA in a subset of, rather than all, meristem cells. We suggest that the GA-regulated rate of expansion of dividing endodermal cells dictates the equivalent rate in other root tissues. Cells must double in size prior to dividing but cannot do so independently, because they are physically restrained by adjacent tissues with which they share cell walls. Our study highlights the importance of probing regulatory mechanisms linking molecular- and cellular-scale processes with tissue and organ growth responses.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Giberelinas/metabolismo , Cápsula de Raíz de Planta/metabolismo , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Cruzamientos Genéticos , Histocitoquímica , Microscopía Confocal , Proteínas Represoras/metabolismo
9.
Plant Physiol ; 150(4): 1784-95, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19515787

RESUMEN

Measuring the dynamics of plant growth is fundamental to the understanding of plant development processes. This paper describes a high-throughput, automatic method to trace Arabidopsis (Arabidopsis thaliana) seedling roots grown on agarose plates. From the trace, additional software can quantify length, curvature, and stimulus response parameters such as onset of gravitropism. The method combines a particle-filtering algorithm with a graph-based method to trace the center line of a root. This top-down approach is robust to a variety of noise effects and is reasonably flexible across different image sets. The resulting tool requires minimal interaction from the user and is able to process long time-lapse sequences with user interaction only required on the first frame. The tool is described first, followed by its use on two sample data sets, one measuring root length and the other additionally analyzing the gravitropic response and curvature. The tool, RootTrace, is open source; both the program and source code will be available online.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Imagenología Tridimensional/métodos , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/metabolismo , Gravitación , Meristema/anatomía & histología , Meristema/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología
10.
Proc Natl Acad Sci U S A ; 106(11): 4549-54, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19255443

RESUMEN

The N-end rule pathway targets protein degradation through the identity of the amino-terminal residue of specific protein substrates. Two components of this pathway in Arabidopsis thaliana, PROTEOLYSIS6 (PRT6) and arginyl-tRNA:protein arginyltransferase (ATE), were shown to regulate seed after-ripening, seedling sugar sensitivity, seedling lipid breakdown, and abscisic acid (ABA) sensitivity of germination. Sensitivity of prt6 mutant seeds to ABA inhibition of endosperm rupture reduced with after-ripening time, suggesting that seeds display a previously undescribed window of sensitivity to ABA. Reduced root growth of prt6 alleles and the ate1 ate2 double mutant was rescued by exogenous sucrose, and the breakdown of lipid bodies and seed-derived triacylglycerol was impaired in mutant seedlings, implicating the N-end rule pathway in control of seed oil mobilization. Epistasis analysis indicated that PRT6 control of germination and establishment, as exemplified by ABA and sugar sensitivity, as well as storage oil mobilization, occurs at least in part via transcription factors ABI3 and ABI5. The N-end rule pathway of protein turnover is therefore postulated to inactivate as-yet unidentified key component(s) of ABA signaling to influence the seed-to-seedling transition.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Germinación , Transducción de Señal , Ubiquitina-Proteína Ligasas/fisiología , Arabidopsis , Mutación , Aminoacil-ARN de Transferencia , Plantones/fisiología , Sacarosa/metabolismo , Factores de Transcripción
11.
Nat Cell Biol ; 10(5): 625-8, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18425113

RESUMEN

Gibberellins (GAs) are key regulators of plant growth and development. They promote growth by targeting the degradation of DELLA repressor proteins; however, their site of action at the cellular, tissue or organ levels remains unknown. To map the site of GA action in regulating root growth, we expressed gai, a non-degradable, mutant DELLA protein, in selected root tissues. Root growth was retarded specifically when gai was expressed in endodermal cells. Our results demonstrate that the endodermis represents the primary GA-responsive tissue regulating organ growth and that endodermal cell expansion is rate-limiting for elongation of other tissues and therefore of the root as a whole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Giberelinas/metabolismo , Raíces de Plantas , Transducción de Señal/fisiología , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transgenes
12.
Plant Cell Physiol ; 49(5): 679-90, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18337269

RESUMEN

Gibberellins are phytohormones that regulate growth and development of plants. Gibberellin homeostasis is maintained by feedback regulation of gibberellin metabolism genes. To understand this regulation, we manipulated the gibberellin pathway in tobacco and studied its effects on the morphological phenotype, gibberellin levels and the expression of endogenous gibberellin metabolism genes. The overexpression of a gibberellin 3-oxidase (biosynthesis gene) in tobacco (3ox-OE) induced slight variations in phenotype and active GA(1) levels, but we also found an increase in GA(8) levels (GA(1) inactivation product) and a conspicuous induction of gibberellin 2-oxidases (catabolism genes; NtGA2ox3 and -5), suggesting an important role for these particular genes in the control of gibberellin homeostasis. The effect of simultaneous overexpression of two biosynthesis genes, a gibberellin 3-oxidase and a gibberellin 20-oxidase (20ox/3ox-OE), on phenotype and gibberellin content suggests that gibberellin 3-oxidases are non-limiting enzymes in tobacco, even in a 20ox-OE background. Moreover, the expression analysis of gibberellin metabolism genes in transgenic plants (3ox-OE, 20ox-OE and hybrid 3ox/20ox-OE), and in response to application of different GA(1) concentrations, showed genes with different gibberellin sensitivity. Gibberellin biosynthesis genes (NtGA20ox1 and NtGA3ox1) are negatively feedback regulated mainly by high gibberellin levels. In contrast, gibberellin catabolism genes which are subject to positive feedback regulation are sensitive to high (NtGA2ox1) or to low (NtGA2ox3 and -5) gibberellin concentrations. These two last GA2ox genes seem to play a predominant role in gibberellin homeostasis under mild gibberellin variations, but not under large gibberellin changes, where the biosynthesis genes GA20ox and GA3ox may be more important.


Asunto(s)
Genes de Plantas , Giberelinas/metabolismo , Giberelinas/farmacología , Homeostasis/efectos de los fármacos , Nicotiana/genética , Nicotiana/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homocigoto , Hibridación Genética/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Oxigenasas de Función Mixta/genética , Oxidación-Reducción/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Pisum sativum/enzimología , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/enzimología , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...