Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-446163

RESUMEN

The spike (S) glycoprotein of the SARS-CoV-2 virus that emerged in 2019 contained a suboptimal furin cleavage site at the S1/S2 junction with the sequence 681PRRAR/S686. This cleavage site is required for efficient airway replication, transmission, and pathogenicity of the virus. The B.1.617 lineage has recently emerged in India, coinciding with substantial disease burden across the country. Early evidence suggests that B.1.617.2 (a sublineage of B.1.617) is more highly transmissible than contemporary lineages. B.1.617 and its sublineages contain a constellation of S mutations including the substitution P681R predicted to further optimise this furin cleavage site. We provide experimental evidence that virus of the B.1.617 lineage has enhanced S cleavage, that enhanced processing of an expressed B.1.617 S protein in cells is due to P681R, and that this mutation enables more efficient cleavage of a peptide mimetic of the B.1.617 S1/S2 cleavage site by recombinant furin. Together, these data demonstrate viruses in this emerging lineage have enhanced S cleavage by furin which we hypothesise could be enhancing transmissibility and pathogenicity.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-432576

RESUMEN

Lineage B.1.1.7 (Variant of Concern 202012/01) is a new SARS-CoV-2 variant which was first sequenced in the UK in September 2020 before becoming the majority strain in the UK and spreading worldwide. The rapid spread of the B.1.1.7 variant results from increased transmissibility but the virological characteristics which underpin this advantage over other circulating strains remain unknown. Here, we demonstrate that there is no difference in viral replication between B.1.1.7 and other contemporaneous SARS-CoV-2 strains in primary human airway epithelial (HAE) cells. However, B.1.1.7 replication is disadvantaged in Vero cells potentially due to increased furin-mediated cleavage of its spike protein as a result of a P681H mutation directly adjacent to the S1/S2 cleavage site. In addition, we show that B.1.1.7 does not escape neutralisation by convalescent or post-vaccination sera. Thus, increased transmission of B.1.1.7 is not caused by increased replication, as measured on HAE cells, or escape from serological immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA