Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0303313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38857300

RESUMEN

Cloud data centers present a challenge to environmental sustainability because of their significant energy consumption. Additionally, performance degradation resulting from energy management solutions, such as virtual machine (VM) consolidation, impacts service level agreements (SLAs) between cloud service providers and users. Thus, to achieve a balance between efficient energy consumption and avoiding SLA violations, we propose a novel VM consolidation algorithm. Conventional algorithms result in unnecessary migrations when improperly selecting VMs. Therefore, our proposed E2SVM algorithm addresses this issue by selecting VMs with high load fluctuations and minimal resource usage from overloaded servers. These selected VMs are then placed on normally loaded servers, considering their stability index. Moreover, our approach prevents server underutilization by either applying all or no VM migrations. Simulation results demonstrate a 12.9% decrease in maximum energy consumption compared with the minimum migration time VM selection policy. In addition, a 47% reduction in SLA violations was observed when using the medium absolute deviation as the overload detection policy. Therefore, this approach holds promise for real-world data centers because it minimizes energy waste and maintains low SLA violations.


Asunto(s)
Algoritmos , Nube Computacional , Electricidad
2.
PLoS One ; 19(4): e0298756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630730

RESUMEN

Wireless Sensor Networks (WSNs) consist of small, multifunctional nodes distributed across various locations to monitor and record parameters. These nodes store data and transmit signals for further processing, forming a crucial topic of study. Monitoring the network's status in WSN applications using clustering systems is essential. Collaboration among sensors from various domains enhances the precision of localised information reporting. However, nodes closer to the data sink consume more energy, leading to hotspot challenges. To address these challenges, this research employs clustering and optimised routing techniques. The aggregation of information involves creating clusters, further divided into sub-clusters. Each cluster includes a Cluster Head (CH) or Sensor Nodes (SN) without a CH. Clustering inherently optimises CHs' capabilities, enhances network activity, and establishes a systematic network topology. This model accommodates both multi-hop and single-hop systems. This research focuses on selecting CHs using a Genetic Algorithm (GA), considering various factors. While GA possesses strong exploration capabilities, it requires effective management. This research uses Prairie Dog Optimization (PDO) to overcome this challenge. The proposed Hotspot Mitigated Prairie with Genetic Algorithm (HM-PGA) significantly improves WSN performance, particularly in hotspot avoidance. With HM-PGA, it achieves a network lifetime of 20913 milliseconds and 310 joules of remaining energy. Comparative analysis with existing techniques demonstrates the superiority of the proposed approach.


Asunto(s)
Algoritmos , Sciuridae , Animales , Análisis por Conglomerados
3.
Sensors (Basel) ; 19(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991658

RESUMEN

Internet of Things (IoT) is rapidly growing and contributing drastically to improve the quality of life. Immense technological innovations and growth is a key factor in IoT advancements. Readily available low cost IoT hardware is essential for continuous adaptation of IoT. Advancements in IoT Operating System (OS) to support these newly developed IoT hardware along with the recent standards and techniques for all the communication layers are the way forward. The variety of IoT OS availability demands to support interoperability that requires to follow standard set of rules for development and protocol functionalities to support heterogeneous deployment scenarios. IoT requires to be intelligent to self-adapt according to the network conditions. In this paper, we present brief overview of different IoT OSs, supported hardware, and future research directions. Therein, we provide overview of the accepted papers in our Special Issue on IoT OS management: opportunities, challenges, and solution. Finally, we conclude the manuscript.

4.
Sensors (Basel) ; 18(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274217

RESUMEN

Due to the limited availability of battery power of the acoustic node, an efficient utilization is desired. Additionally, the aquatic environment is harsh; therefore, the battery cannot be replaced, which leaves the network prone to sudden failures. Thus, an efficient node battery dissipation is required to prolong the network lifespan and optimize the available resources. In this paper, we propose four schemes: Adaptive transmission range in WDFAD-Depth-Based Routing (DBR) (A-DBR), Cluster-based WDFAD-DBR (C-DBR), Backward transmission-based WDFAD-DBR (B-DBR) and Collision Avoidance-based WDFAD-DBR (CA-DBR) for Internet of Things-enabled Underwater Wireless Sensor Networks (IoT, UWSNs). A-DBR adaptively adjusts its transmission range to avoid the void node for forwarding data packets at the sink, while C-DBR minimizes end-to-end delay along with energy consumption by making small clusters of nodes gather data. In continuous transmission range adjustment, energy consumption increases exponentially; thus, in B-DBR, a fall back recovery mechanism is used to find an alternative route to deliver the data packet at the destination node with minimal energy dissipation; whereas, CA-DBR uses a fall back mechanism along with the selection of the potential node that has the minimum number of neighbors to minimize collision on the acoustic channel. Simulation results show that our schemes outperform the baseline solution in terms of average packet delivery ratio, energy tax, end-to-end delay and accumulated propagation distance.

5.
Sensors (Basel) ; 18(9)2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208647

RESUMEN

Sparse node deployment and dynamic network topology in underwater wireless sensor networks (UWSNs) result in void hole problem. In this paper, we present two interference-aware routing protocols for UWSNs (Intar: interference-aware routing; and Re-Intar: reliable and interference-aware routing). In proposed protocols, we use sender based approach to avoid the void hole. The beauty of the proposed schemes is that they not only avoid void hole but also reduce the probability of collision. The proposed Re-Intar also uses one-hop backward transmission at the source node to further improve the packet delivery ratio of the network. Simulation results verify the effectiveness of the proposed schemes in terms of end-to-end delay, packet delivery ratio and energy consumption.

6.
PLoS One ; 11(7): e0158072, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27409082

RESUMEN

Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.


Asunto(s)
Redes de Comunicación de Computadores , Seguridad Computacional , Tecnología Inalámbrica , Algoritmos , Simulación por Computador , Programas Informáticos
7.
PLoS One ; 10(5): e0123069, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25992913

RESUMEN

Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.


Asunto(s)
Redes de Comunicación de Computadores/instrumentación , Seguridad Computacional/instrumentación , Tecnología Inalámbrica/instrumentación , Algoritmos , Simulación por Computador , Teoría de la Información
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...