Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Genet ; 105(2): 196-201, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37850357

RESUMEN

Syndromic constitutive thrombocytopenia encompasses a heterogeneous group of disorders characterised by quantitative and qualitative defects of platelets while featuring other malformations. Recently, heterozygous, de novo variants in RAP1B were reported in three cases of syndromic thrombocytopenia. Here, we report two additional, unrelated individuals identified retrospectively in our data repository with heterozygous variants in RAP1B: NM_001010942.2(RAP1B):c.35G>A, p.(Gly12Glu) (de novo) and NM_001010942.2(RAP1B):c.178G>A, p.(Gly60Arg). Both individuals had thrombocytopenia, as well as congenital malformations, and neurological, behavioural, and dysmorphic features, in line with previous reports. Our data supports the causal role of monoallelic RAP1B variants that disrupt RAP1B GTPase activity in syndromic congenital thrombocytopenia.


Asunto(s)
Plaquetas , Trombocitopenia , Humanos , Estudios Retrospectivos , Plaquetas/metabolismo , Trombocitopenia/genética , Proteínas de Unión al GTP rap
2.
Brain ; 147(4): 1436-1456, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37951597

RESUMEN

The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Trastornos del Movimiento , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Femenino , Humanos , Masculino , Transportadoras de Casetes de Unión a ATP , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Temblor , Pez Cebra , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
3.
Eur J Hum Genet ; 30(9): 1029-1035, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35614200

RESUMEN

To present our experience using a multiomic approach, which integrates genetic and biochemical testing as a first-line diagnostic tool for patients with inherited metabolic disorders (IMDs). A cohort of 3720 patients from 62 countries was tested using a panel including 206 genes with single nucleotide and copy number variant (SNV/CNV) detection, followed by semi-automatic variant filtering and reflex biochemical testing (25 assays). In 1389 patients (37%), a genetic diagnosis was achieved. Within this cohort, the highest diagnostic yield was obtained for patients from Asia (57.5%, mainly from Pakistan). Overall, 701 pathogenic/likely pathogenic unique SNVs and 40 CNVs were identified. In 620 patients, the result of the biochemical tests guided variant classification and reporting. Top five diagnosed diseases were: Gaucher disease, Niemann-Pick disease type A/B, phenylketonuria, mucopolysaccharidosis type I, and Wilson disease. We show that integrated genetic and biochemical testing facilitated the decision on clinical relevance of the variants and led to a high diagnostic yield (37%), which is comparable to exome/genome sequencing. More importantly, up to 43% of these patients (n = 610) could benefit from medical treatments (e.g., enzyme replacement therapy). This multiomic approach constitutes a unique and highly effective tool for the genetic diagnosis of IMDs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Enfermedades Metabólicas , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/genética , Pakistán , Secuenciación del Exoma
4.
J Clin Med ; 10(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807407

RESUMEN

This study identifies the genetic background of familial hypercholesterolemia (FH) patients in Romania and evaluates the association between mutations and cardiovascular events. We performed a prospective observational study of 61 patients with a clinical diagnosis of FH selected based on Dutch Lipid Clinic Network (DLCN) and Simon Broome score between 2017 and 2020. Two techniques were used to identify mutations: multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing. The mutation rate was 37.7%, i.e., 23 patients with mutations were identified, of which 7 subjects had pathogenic mutations and 16 had polymorphisms. Moreover, 10 variants of the low-density lipoprotein receptor (LDLR) gene were identified in 22 patients, i.e., one variant of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene in six patients, and one variant of the apolipoprotein B (APOB) gene in three patients. Of the LDLR gene variants, four were LDLR pathogenic mutations (c.81C > G, c.502G > A, c.1618G > A mutations in exon 2, exon 4, exon 11, and exon 13-15 duplication). The PCSK9 and APOB gene variants were benign mutations. The pathogenic LDLR mutations were significant predictors of the new cardiovascular events, and the time interval for new cardiovascular events occurrence was significantly decreased, compared to FH patients without mutations. In total, 12 variants were identified, with four pathogenic variants identified in the LDLR gene, whereas 62.3% of the study population displayed no pathological mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...