Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 893: 164782, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321502

RESUMEN

Protected areas (PAs) are crucial in conserving biodiversity under climate change. In boreal regions, trends of biologically relevant climate variables (i.e., bioclimate) in PAs have remained unquantified. We investigated the changes and variability of 11 key bioclimatic variables across Finland during the period 1961-2020 based on gridded climatology. Our results suggest significant changes in annual mean and growing season temperatures over the entire study area, whereas, e.g., annual precipitation sum and April-September water balance have increased especially in the central and northern parts of Finland. We found substantial variation in bioclimatic changes over the 631 studied PAs; in the northern boreal zone (NB) the number of snow-covered days has decreased on average by 5.9 days between 1961-1990 and 1991-2020, while in the southern boreal zone (SB) the corresponding decrease has been 16.1 days. The number of frost days in spring with absent snow cover has decreased in the NB (on average -0.9 days) while increasing in the SB (0.5 days), reflecting the changing exposure of biota to frost. The observed increases in accumulation of heat in the SB and more frequent rain-on-snow events in the NB can affect drought tolerance and winter survival of species, respectively. Principal component analysis suggested that the main dimensions of bioclimate change in PAs vary across vegetation zones; for example, in the SB the changes are related to annual and growing season temperatures, whereas in the middle boreal zone the changes are linked to altered moisture and snow conditions. Our results highlight the substantial spatial variation in bioclimatic trends and climate vulnerability across the PAs and vegetation zones. These findings provide a basis for the understanding of the multifaceted changes the boreal PA network is facing and help to develop and direct conservation and management.


Asunto(s)
Biodiversidad , Cambio Climático , Finlandia , Estaciones del Año , Nieve
2.
Sci Rep ; 10(1): 1678, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015382

RESUMEN

Climate change velocity is an increasingly used metric to assess the broad-scale climatic exposure and climate change induced risks to terrestrial and marine ecosystems. However, the utility of this metric in conservation planning can be enhanced by determining the velocities of multiple climatic drivers in real protected area (PA) networks on ecologically relevant scales. Here we investigate the velocities of three key bioclimatic variables across a nation-wide reserve network, and the consequences of including fine-grained topoclimatic data in velocity assessments. Using 50-m resolution data describing present-day and future topoclimates, we assessed the velocities of growing degree days, the mean January temperature and climatic water balance in the Natura 2000 PA network in Finland. The high-velocity areas for the three climate variables differed drastically, indicating contrasting exposure risks in different PAs. The 50-m resolution climate data revealed more realistic estimates of climate velocities and more overlap between the present-day and future climate spaces in the PAs than the 1-km resolution data. Even so, the current temperature conditions were projected to disappear from almost all the studied PAs by the end of this century. Thus, in PA networks with only moderate topographic variation, far-reaching climate change induced ecological changes may be inevitable.

3.
PLoS One ; 8(5): e62111, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667454

RESUMEN

An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Modelos Teóricos , Medición de Riesgo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...