Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
EJNMMI Res ; 14(1): 25, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446249

RESUMEN

BACKGROUND: P2X7 receptor has emerged as a potentially superior PET imaging marker to TSPO, the gold standard for imaging glial reactivity. [11C]SMW139 is the most recently developed radiotracer to image P2X7 receptor. The aim of this study was to image reactive glia in the APP/PS1-21 transgenic (TG) mouse model of Aß deposition longitudinally using [11C]SMW139 targeting P2X7 receptor and to compare tracer uptake to that of [18F]F-DPA targeting TSPO at the final imaging time point. TG and wild type (WT) mice underwent longitudinal in vivo PET imaging using [11C]SMW139 at 5, 8, 11, and 14 months, followed by [18F]F-DPA PET scan only at 14 months. In vivo imaging results were verified by ex vivo brain autoradiography, immunohistochemical staining, and analysis of [11C]SMW139 unmetabolized fraction in TG and WT mice. RESULTS: Longitudinal change in [11C]SMW139 standardized uptake values (SUVs) showed no statistically significant increase in the neocortex and hippocampus of TG or WT mice, which was consistent with findings from ex vivo brain autoradiography. Significantly higher [18F]F-DPA SUVs were observed in brain regions of TG compared to WT mice. Quantified P2X7-positive staining in the cortex and thalamus of TG mice showed a minor increase in receptor expression with ageing, while TSPO-positive staining in the same regions showed a more robust increase in expression in TG mice as they aged. [11C]SMW139 was rapidly metabolized in mice, with 33% of unmetabolized fraction in plasma and 29% in brain homogenates 30 min after injection. CONCLUSIONS: [11C]SMW139, which has a lower affinity for the rodent P2X7 receptor than the human version of the receptor, was unable to image the low expression of P2X7 receptor in the APP/PS1-21 mouse model. Additionally, the rapid metabolism of [11C]SMW139 in mice and the presence of several brain-penetrating radiometabolites significantly impacted the analysis of in vivo PET signal of the tracer. Finally, [18F]F-DPA targeting TSPO was more suitable for imaging reactive glia and neuroinflammatory processes in the APP/PS1-21 mouse model, based on the findings presented in this study and previous studies with this mouse model.

3.
Obesity (Silver Spring) ; 31(7): 1844-1858, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37368516

RESUMEN

OBJECTIVE: Cannabinoid type 1 receptors (CB1R) modulate feeding behavior and energy homeostasis, and the CB1R tone is dysgulated in obesity. This study aimed to investigate CB1R availability in peripheral tissue and brain in young men with overweight versus lean men. METHODS: Healthy males with high (HR, n = 16) or low (LR, n = 20) obesity risk were studied with fluoride 18-labeled FMPEP-d2 positron emission tomography to quantify CB1R availability in abdominal adipose tissue, brown adipose tissue, muscle, and brain. Obesity risk was assessed by BMI, physical exercise habits, and familial obesity risk, including parental overweight, obesity, and type 2 diabetes. To assess insulin sensitivity, fluoro-[18 F]-deoxy-2-D-glucose positron emission tomography during hyperinsulinemic-euglycemic clamp was performed. Serum endocannabinoids were analyzed. RESULTS: CB1R availability in abdominal adipose tissue was lower in the HR than in the LR group, whereas no difference was found in other tissues. CB1R availability of abdominal adipose tissue and brain correlated positively with insulin sensitivity and negatively with unfavorable lipid profile, BMI, body adiposity, and inflammatory markers. Serum arachidonoyl glycerol concentration was associated with lower CB1R availability of the whole brain, unfavorable lipid profile, and higher serum inflammatory markers. CONCLUSIONS: The results suggest endocannabinoid dysregulation already in the preobesity state.


Asunto(s)
Cannabinoides , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Masculino , Humanos , Sobrepeso , Resistencia a la Insulina/fisiología , Receptores de Cannabinoides , Obesidad , Grasa Abdominal/diagnóstico por imagen , Endocannabinoides , Tejido Adiposo
4.
J Cereb Blood Flow Metab ; 43(2): 258-268, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36163685

RESUMEN

The membrane-based purinergic 7 receptor (P2X7R) is expressed on activated microglia and the target of the radioligand [11C]SMW139 for in vivo assessment of neuroinflammation. This study investigated the contribution of radiolabelled metabolites which potentially affect its quantification. Ex vivo high-performance liquid chromatography with a radio detector (radioHPLC) was used to evaluate the parent and radiometabolite fractions of [11C]SMW139 in the brain and plasma of eleven mice. Twelve healthy humans underwent 90-min [11C]SMW139 brain PET with arterial blood sampling and radiometabolite analysis. The volume of distribution was estimated by using one- and two- tissue compartment (TCM) modeling with single (VT) and dual (VTp) input functions. RadioHPLC showed three major groups of radiometabolite peaks with increasing concentrations in the plasma of all mice and humans. Two radiometabolite peaks were also visible in mice brain homogenates and therefore considered for dual input modeling in humans. 2TCM with single input function provided VT estimates with a wide range (0.10-10.74) and high coefficient of variation (COV: 159.9%), whereas dual input function model showed a narrow range of VTp estimates (0.04-0.24; COV: 33.3%). In conclusion, compartment modeling with correction for brain-penetrant radiometabolites improves the in vivo quantification of [11C]SMW139 binding to P2X7R in the human brain.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Ratones , Animales , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión , Algoritmos
5.
Eur J Nucl Med Mol Imaging ; 50(2): 266-274, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166079

RESUMEN

PURPOSE: Photoperiod determines the metabolic activity of brown adipose tissue (BAT) and affects the food intake and body mass of mammals. Sympathetic innervation of the BAT controls thermogenesis and facilitates physiological adaption to seasonal changes, but the exact mechanism remains elusive. Previous studies have shown that central opioid signaling regulates BAT thermogenesis, and that the expression of the brain mu-opioid receptor (MOR) varies seasonally. Therefore, it is important to know whether MOR expression in BAT shows seasonal variation. METHODS: We determined the effect of photoperiod on BAT MOR availability using [11C]carfentanil positron emission tomography (PET). Adult rats (n = 9) were repeatedly imaged under various photoperiods in order to simulate seasonal changes. RESULTS: Long photoperiod was associated with low MOR expression in BAT (ß = - 0.04, 95% confidence interval: - 0.07, - 0.01), but not in muscles. We confirmed the expression of MOR in BAT and muscle using immunofluorescence staining. CONCLUSION: Photoperiod affects MOR availability in BAT. Sympathetic innervation of BAT may influence thermogenesis via the peripheral MOR system. The present study supports the utility of [11C]carfentanil PET to study the peripheral MOR system.


Asunto(s)
Tejido Adiposo Pardo , Fotoperiodo , Receptores Opioides mu , Animales , Ratas , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Tomografía de Emisión de Positrones/métodos , Termogénesis , Receptores Opioides mu/metabolismo
6.
J Pharm Biomed Anal ; 219: 114860, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35738120

RESUMEN

Radiometabolites of PET tracers interfere with imaging and need to be taken into account when modeling PET data. Various tracer and radiometabolite characteristics affect the uptake rate into tissue. In this study, we investigated two such factors, lipophilicity and protein-free fraction. A novel rapid method was developed using thin-layer chromatography with digital autoradiography (radioTLC) and ultrafiltration for analyzing the protein-free fractions of an exemplar PET tracer, [11C]SMW139 (fP, free parent tracer over all radioactivity), and its radiometabolites (fM, free radiometabolites over all radioactivity). Detailed understanding of the uptake of radiometabolites into extravascular cells requires analyzing fM, which has not previously been performed for PET tracers. Mice were injected with [11C]SMW139, and time-activity curves from plasma and brain coupled with the parent fraction and free fraction data were analyzed to demonstrate the true levels of protein-free and protein-bound [11C]SMW139 and its radiometabolites in plasma. The ultrafiltration method included separate membrane correction factors for the parent tracer and its radiometabolites for analysis of unbiased fP and fM. Metabolism of [11C]SMW139 was rapid, and after 45 min, the parent fraction was 0.33 in plasma and 0.28 in brain. Ultrafiltration membrane correction had a significant effect on the fP but not the fM. From 10-45 min, the fP decreased from 0.032 to 0.007, while fM remained between 0.52 and 0.35. The much higher fM in plasma could explain why the less lipophilic radiometabolites enter the brain efficiently. This detailed understanding of fP and fM from rodents can be used in translational studies to explain the behavior of the tracer in humans. Similar parent fraction and plasma protein binding methods can be used for human in vivo analysis.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Animales , Proteínas Sanguíneas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Ratones , Tomografía de Emisión de Positrones/métodos , Unión Proteica , Radiofármacos/química
7.
Front Neurol ; 13: 826423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222254

RESUMEN

BACKGROUND: Detailed characterization of early pathophysiological changes in preclinical Alzheimer's disease (AD) is necessary to enable development of correctly targeted and timed disease-modifying treatments. ASIC-E4 study ("Beta-Amyloid, Synaptic loss, Inflammation and Cognition in healthy APOE ε4 carriers") combines state-of-the-art neuroimaging and fluid-based biomarker measurements to study the early interplay of three key pathological features of AD, i.e., beta-amyloid (Aß) deposition, neuroinflammation and synaptic dysfunction and loss in cognitively normal volunteers with three different levels of genetic (APOE-related) risk for late-onset AD. OBJECTIVE: Here, our objective is to describe the study design, used protocols and baseline demographics of the ASIC-E4 study. METHODS/DESIGN: ASIC-E4 is a prospective observational multimodal imaging study performed in Turku PET Centre in collaboration with University of Gothenburg. Cognitively normal 60-75-year-old-individuals with known APOE ε4/ε4 genotype were recruited via local Auria Biobank (Turku, Finland). Recruitment of the project has been completed in July 2020 and 63 individuals were enrolled to three study groups (Group 1: APOE ε4/ε4, N = 19; Group 2: APOE ε4/ε3, N = 22; Group 3: APOE ε3/ε3, N = 22). At baseline, all participants will undergo positron emission tomography imaging with tracers targeted against Aß deposition (11C-PIB), activated glia (11C-PK11195) and synaptic vesicle glycoprotein 2A (11C-UCB-J), two brain magnetic resonance imaging scans, and extensive cognitive testing. In addition, blood samples are collected for various laboratory measurements and blood biomarker analysis and cerebrospinal fluid samples are collected from a subset of participants based on additional voluntary informed consent. To evaluate the predictive value of the early neuroimaging findings, neuropsychological evaluation and blood biomarker measurements will be repeated after a 4-year follow-up period. DISCUSSION: Results of the ASIC-E4 project will bridge the gap related to limited knowledge of the synaptic and inflammatory changes and their association with each other and Aß in "at-risk" individuals. Thorough in vivo characterization of the biomarker profiles in this population will produce valuable information for diagnostic purposes and future drug development, where the field has already started to look beyond Aß.

8.
Int J Obes (Lond) ; 46(2): 400-407, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728775

RESUMEN

BACKGROUND: Obesity is a pressing public health concern worldwide. Novel pharmacological means are urgently needed to combat the increase of obesity and accompanying type 2 diabetes (T2D). Although fully established obesity is associated with neuromolecular alterations and insulin resistance in the brain, potential obesity-promoting mechanisms in the central nervous system have remained elusive. In this triple-tracer positron emission tomography study, we investigated whether brain insulin signaling, µ-opioid receptors (MORs) and cannabinoid CB1 receptors (CB1Rs) are associated with risk for developing obesity. METHODS: Subjects were 41 young non-obese males with variable obesity risk profiles. Obesity risk was assessed by subjects' physical exercise habits, body mass index and familial risk factors, including parental obesity and T2D. Brain glucose uptake was quantified with [18F]FDG during hyperinsulinemic euglycemic clamp, MORs were quantified with [11C]carfentanil and CB1Rs with [18F]FMPEP-d2. RESULTS: Subjects with higher obesity risk had globally increased insulin-stimulated brain glucose uptake (19 high-risk subjects versus 19 low-risk subjects), and familial obesity risk factors were associated with increased brain glucose uptake (38 subjects) but decreased availability of MORs (41 subjects) and CB1Rs (36 subjects). CONCLUSIONS: These results suggest that the hereditary mechanisms promoting obesity may be partly mediated via insulin, opioid and endocannabinoid messaging systems in the brain.


Asunto(s)
Cerebro/metabolismo , Intolerancia a la Glucosa/etiología , Obesidad/diagnóstico , Receptor Cannabinoide CB1/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos , Adulto , Índice de Masa Corporal , Cerebro/fisiopatología , Femenino , Finlandia/epidemiología , Intolerancia a la Glucosa/epidemiología , Intolerancia a la Glucosa/metabolismo , Humanos , Modelos Lineales , Masculino , Obesidad/epidemiología , Obesidad/metabolismo , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/estadística & datos numéricos , Receptor Cannabinoide CB1/metabolismo , Receptores Opioides mu/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...