Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1254317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701041

RESUMEN

Nuclear receptors are ligand-regulated transcription factors that regulate vast cellular activities and serve as an important class of drug targets. Among them, peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family and have been extensively studied for their roles in metabolism, differentiation, development, and cancer, among others. Recently, there has been considerable interest in understanding and defining the function of PPARs and their agonists in regulating innate and adaptive immune responses and their pharmacological potential in combating chronic inflammatory diseases. In this review, we focus on emerging evidence for the potential role of PPARγ in macrophage biology, which is the prior innate immune executive in metabolic and tissue homeostasis. We also discuss the role of PPARγ as a regulator of macrophage function in inflammatory diseases. Lastly, we discuss the possible application of PPARγ antagonists in metabolic pathologies.

2.
Arterioscler Thromb Vasc Biol ; 43(1): 30-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453279

RESUMEN

BACKGROUND: Atherosclerosis is a medical urgency manifesting at the onset of hypercholesterolemia and is associated with aging. Activation of PPARγ (peroxisome proliferator-activated receptor γ) counteracts metabolic dysfunction influenced by aging, and its deacetylation displays an atheroprotective property. Despite the marked increase of PPARγ acetylation during aging, it is unknown whether PPARγ acetylation is a pathogenic contributor to aging-associated atherosclerosis. METHODS: Mice with constitutive deacetylation-mimetic PPARγ mutations on lysine residues K268 and K293 (2KR) in an LDL (low-density lipoprotein)-receptor knockout (Ldlr-/-) background (2KR:Ldlr-/-) were aged for 18 months on a standard laboratory diet to examine the cardiometabolic phenotype, which was confirmed in Western-type diet-fed 2KR:Ldlr+/- mice. Whole-liver RNA-sequencing and in vitro studies in bone marrow-derived macrophages were conducted to decipher the mechanism. RESULTS: In contrast to severe atherosclerosis in WT:Ldlr-/- mice, aged 2KR:Ldlr-/- mice developed little to no plaque, which was underlain by a significantly improved plasma lipid profile, with particular reductions in circulating LDL. The protection from hypercholesterolemia was recapitulated in Western-type diet-fed 2KR:Ldlr+/- mice. Liver RNA-sequencing analysis revealed suppression of liver inflammation rather than changes in cholesterol metabolism. This anti-inflammatory effect of 2KR was attributed to polarized M2 activation of macrophages. Additionally, the upregulation of core circadian component Bmal1 (brain and muscle ARNT-like 1), perceived to be involved in anti-inflammatory immunity, was observed in the liver and bone marrow-derived macrophages. CONCLUSIONS: PPARγ deacetylation in mice prevents the development of aging-associated atherosclerosis and hypercholesterolemia, in association with the anti-inflammatory phenotype of 2KR macrophages.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Placa Aterosclerótica , Animales , Ratones , PPAR gamma/metabolismo , Hipercolesterolemia/complicaciones , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Receptores de LDL/metabolismo , ARN , Ratones Noqueados , Ratones Endogámicos C57BL
3.
Adv Sci (Weinh) ; 10(2): e2204190, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394167

RESUMEN

Systemic glucose metabolism and insulin activity oscillate in response to diurnal rhythms and nutrient availability with the necessary involvement of adipose tissue to maintain metabolic homeostasis. However, the adipose-intrinsic regulatory mechanism remains elusive. Here, the dynamics of PPARγ acetylation in adipose tissue are shown to orchestrate metabolic oscillation in daily rhythms. Acetylation of PPARγ displays a diurnal rhythm in young healthy mice, with the peak at zeitgeber time 0 (ZT0) and the trough at ZT18. This rhythmic pattern is deranged in pathological conditions such as obesity, aging, and circadian disruption. The adipocyte-specific acetylation-mimetic mutation of PPARγ K293Q (aKQ) restrains adipose plasticity during calorie restriction and diet-induced obesity, associated with proteolysis of a core circadian component BMAL1. Consistently, the rhythmicity in glucose tolerance and insulin sensitivity is altered in aKQ and the complementary PPARγ deacetylation-mimetic K268R/K293R (2KR) mouse models. Furthermore, the PPARγ acetylation-sensitive downstream target adipsin is revealed as a novel diurnal factor that destabilizes BMAL1 and mediates metabolic rhythms. These findings collectively signify that PPARγ acetylation is a hinge connecting adipose plasticity and metabolic rhythms, the two determinants of metabolic health.


Asunto(s)
Factores de Transcripción ARNTL , PPAR gamma , Ratones , Animales , PPAR gamma/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Acetilación , Obesidad/metabolismo , Tejido Adiposo/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 853765, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360075

RESUMEN

Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.


Asunto(s)
Tejido Adiposo , Envejecimiento , Médula Ósea , Adipocitos/metabolismo , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Huesos/metabolismo , Humanos , Inflamación
5.
Life Metab ; 1(3): 258-269, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37213714

RESUMEN

Obesity is characterized by chronic, low-grade inflammation, which is driven by macrophage infiltration of adipose tissue. PPARγ is well established to have an anti-inflammatory function in macrophages, but the mechanism that regulates its function in these cells remains to be fully elucidated. PPARγ undergoes post-translational modifications (PTMs), including acetylation, to mediate ligand responses, including on metabolic functions. Here, we report that PPARγ acetylation in macrophages promotes their infiltration into adipose tissue, exacerbating metabolic dysregulation. We generated a mouse line that expresses a macrophage-specific, constitutive acetylation-mimetic form of PPARγ (K293Qflox/flox:LysM-cre, mK293Q) to dissect the role of PPARγ acetylation in macrophages. Upon high-fat diet feeding to stimulate macrophage infiltration into adipose tissue, we assessed the overall metabolic profile and tissue-specific phenotype of the mutant mice, including responses to the PPARγ agonist Rosiglitazone. Macrophage-specific PPARγ K293Q expression promotes proinflammatory macrophage infiltration and fibrosis in epididymal white adipose tissue, but not in subcutaneous or brown adipose tissue, leading to decreased energy expenditure, insulin sensitivity, glucose tolerance, and adipose tissue function. Furthermore, mK293Q mice are resistant to Rosiglitazone-induced improvements in adipose tissue remodeling. Our study reveals that acetylation is a new layer of PPARγ regulation in macrophage activation, and highlights the importance and potential therapeutic implications of such PTMs in regulating metabolism.

6.
Elife ; 102021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34155972

RESUMEN

Background: Marrow adipose tissue (MAT) has been shown to be vital for regulating metabolism and maintaining skeletal homeostasis in the bone marrow (BM) niche. As a reflection of BM remodeling, MAT is highly responsive to nutrient fluctuations, hormonal changes, and metabolic disturbances such as obesity and diabetes mellitus. Expansion of MAT has also been strongly associated with bone loss in mice and humans. However, the regulation of BM plasticity remains poorly understood, as does the mechanism that links changes in marrow adiposity with bone remodeling. Methods: We studied deletion of Adipsin, and its downstream effector, C3, in C57BL/6 mice as well as the bone-protected PPARγ constitutive deacetylation 2KR mice to assess BM plasticity. The mice were challenged with thiazolidinedione treatment, calorie restriction, or aging to induce bone loss and MAT expansion. Analysis of bone mineral density and marrow adiposity was performed using a µCT scanner and by RNA analysis to assess adipocyte and osteoblast markers. For in vitro studies, primary bone marrow stromal cells were isolated and subjected to osteoblastogenic or adipogenic differentiation or chemical treatment followed by morphological and molecular analyses. Clinical data was obtained from samples of a previous clinical trial of fasting and high-calorie diet in healthy human volunteers. Results: We show that Adipsin is the most upregulated adipokine during MAT expansion in mice and humans in a PPARγ acetylation-dependent manner. Genetic ablation of Adipsin in mice specifically inhibited MAT expansion but not peripheral adipose depots, and improved bone mass during calorie restriction, thiazolidinedione treatment, and aging. These effects were mediated through its downstream effector, complement component C3, to prime common progenitor cells toward adipogenesis rather than osteoblastogenesis through inhibiting Wnt/ß-catenin signaling. Conclusions: Adipsin promotes new adipocyte formation and affects skeletal remodeling in the BM niche. Our study reveals a novel mechanism whereby the BM sustains its own plasticity through paracrine and endocrine actions of a unique adipokine. Funding: This work was supported by the National Institutes of Health T32DK007328 (NA), F31DK124926 (NA), R01DK121140 (JCL), R01AR068970 (BZ), R01AR071463 (BZ), R01DK112943 (LQ), R24DK092759 (CJR), and P01HL087123 (LQ).


Asunto(s)
Adiposidad , Médula Ósea/metabolismo , Factor D del Complemento/genética , Células Madre Mesenquimatosas/metabolismo , Animales , Factor D del Complemento/metabolismo , Femenino , Humanos , Masculino , Ratones
7.
Rheumatology (Oxford) ; 61(1): 440-451, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33769459

RESUMEN

OBJECTIVE: The occurrence and development of an endemic OA, Kashin-Beck disease (KBD), is closely related to oxidative stress induced by free radicals. The aim of the study was to find the key signalling molecules or pathogenic factors as a potential treatment strategy for KBD. METHODS: Real-time PCR and western blotting were performed to detect the mRNA and protein expression levels in cells and tissues. Immunohistochemical staining was assayed in rat models and human samples obtained from children. The type of cell death was identified by annexin V and propidium iodide staining with flow cytometry. RESULTS: Oxidative stress decreased levels of Smad2 and Smad3 in hypertrophic chondrocytes both in vitro and in vivo. In the cartilage of KBD patients, the expression of Smad2 and Smad3 proteins in the middle and deep zone was significantly decreased with an observed full deletion in the deep zone of some samples. Reduction of Smad2 protein induced necrotic death of hypertrophic chondrocytes, while reduction of Smad3 protein induced apoptosis. The reduction of Smad2 protein was not accompanied by Smad3 protein reduction in hypertrophic chondrocyte necrosis. Furthermore, the reduction of Smad2 also impaired the construction of tissue-engineered cartilage in vitro. CONCLUSION: These studies reveal that oxidative stress causes necrosis of hypertrophic chondrocytes by downregulating Smad2 protein, which increases the pathogenesis of KBD cartilage. The importance of Smad2 in the development of KBD provides a new potential target for the treatment of KBD.


Asunto(s)
Condrocitos/metabolismo , Enfermedad de Kashin-Beck/etiología , Osteoartritis/etiología , Estrés Oxidativo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Animales , Apoptosis , Estudios de Casos y Controles , Línea Celular , Condrocitos/patología , Enfermedades Endémicas , Hipertrofia , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/fisiopatología , Masculino , Ratones , Necrosis , Ratas Sprague-Dawley , Selenio/deficiencia
8.
Diabetes ; 69(8): 1793-1803, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32409492

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death in patients with diabetes, and tight glycemic control fails to reduce the risk of developing CVD. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor γ (PPARγ) agonists, are potent insulin sensitizers with antiatherogenic properties, but their clinical use is limited by side effects. PPARγ deacetylation on two lysine residues (K268 and K293) induces brown remodeling of white adipose tissue and uncouples the adverse effects of TZDs from insulin sensitization. Here we show that PPARγ deacetylation confers antiatherogenic properties and retains the insulin-sensitizing effects of TZD while circumventing its detriments. We generated mice homozygous with mice with deacetylation-mimetic PPARγ mutations K268R/K293R (2KR) on an LDL-receptor knockout (Ldlr -/- ) background. 2KR:Ldlr -/- mice showed smaller atherosclerotic lesion areas than Ldlr -/- mice, particularly in aortic arches. With rosiglitazone treatment, 2KR:Ldlr -/- mice demonstrated a residual antiatherogenic response and substantial protection against bone loss and fluid retention. The antiatherosclerotic effect of 2KR was attributed to the protection of endothelium, indicated by improved endothelium-dependent vasorelaxation and repressed expression of proatherogenic factors including inducible nitric oxide synthase, interleukin-6, and NADPH oxidase 2. Therefore, manipulating PPARγ acetylation is a promising therapeutic strategy to control risk of CVD in diabetes treatment.


Asunto(s)
Aterosclerosis/metabolismo , Diabetes Mellitus/metabolismo , PPAR gamma/metabolismo , Animales , Aterosclerosis/genética , Western Blotting , Cromatografía Liquida , Diabetes Mellitus/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación/genética , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , PPAR gamma/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de LDL/genética , Receptores de LDL/metabolismo , Tiazolidinedionas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...