Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Dtsch Dermatol Ges ; 19(8): 1178-1184, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34096688

RESUMEN

BACKGROUND AND OBJECTIVES: Convolutional neural networks (CNN) enable accurate diagnosis of medical images and perform on or above the level of individual physicians. Recently, collective human intelligence (CoHI) was shown to exceed the diagnostic accuracy of individuals. Thus, diagnostic performance of CoHI (120 dermatologists) versus individual dermatologists versus two state-of-the-art CNN was investigated. PATIENTS AND METHODS: Cross-sectional reader study with presentation of 30 clinical cases to 120 dermatologists. Six diagnoses were offered and votes collected via remote voting devices (quizzbox®, Quizzbox Solutions GmbH, Stuttgart, Germany). Dermatoscopic images were classified by a binary and multiclass CNN (FotoFinder Systems GmbH, Bad Birnbach, Germany). Three sets of diagnostic classifications were scored against ground truth: (1) CoHI, (2) individual dermatologists, and (3) CNN. RESULTS: CoHI attained a significantly higher accuracy [95 % confidence interval] (80.0 % [62.7 %-90.5 %]) than individual dermatologists (75.7 % [73.8 %-77.5 %]) and CNN (70.0 % [52.1 %-83.3 %]; all P < 0.001) in binary classifications. Moreover, CoHI achieved a higher sensitivity (82.4 % [59.0 %-93.8 %]) and specificity (76.9 % [49.7 %-91.8 %]) than individual dermatologists (sensitivity 77.8 % [75.3 %-80.2 %], specificity 73.0 % [70.6 %-75.4 %]) and CNN (sensitivity 70.6 % [46.9 %-86.7 %], specificity 69.2 % [42.4 %-87.3 %]). The diagnostic accuracy of CoHI was superior to that of individual dermatologists (P < 0.001) in multiclass evaluation, with the accuracy of the latter comparable to multiclass CNN. CONCLUSIONS: Our analysis revealed that the majority vote of an interconnected group of dermatologists (CoHI) outperformed individuals and CNN in a demanding skin lesion classification task.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Inteligencia Artificial , Estudios Transversales , Dermatólogos , Dermoscopía , Humanos , Inteligencia , Neoplasias Cutáneas/diagnóstico
3.
Eur J Cancer ; 144: 192-199, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33370644

RESUMEN

BACKGROUND: The clinical differentiation of face and scalp lesions (FSLs) is challenging even for trained dermatologists. Studies comparing the diagnostic performance of a convolutional neural network (CNN) with dermatologists in FSL are lacking. METHODS: A market-approved CNN (Moleanalyzer-Pro, FotoFinder Systems) was used for binary classifications of 100 dermoscopic images of FSL. The same lesions were used in a two-level reader study including 64 dermatologists (level I: dermoscopy only; level II: dermoscopy, clinical close-up images, textual information). Primary endpoints were the CNN's sensitivity and specificity in comparison with the dermatologists' management decisions in level II. Generalizability of the CNN results was tested by using four additional external data sets. RESULTS: The CNN's sensitivity, specificity and ROC AUC were 96.2% [87.0%-98.9%], 68.8% [54.7%-80.1%] and 0.929 [0.880-0.978], respectively. In level II, the dermatologists' management decisions showed a mean sensitivity of 84.2% [82.2%-86.2%] and specificity of 69.4% [66.0%-72.8%]. When fixing the CNN's specificity at the dermatologists' mean specificity (69.4%), the CNN's sensitivity (96.2% [87.0%-98.9%]) was significantly higher than that of dermatologists (84.2% [82.2%-86.2%]; p < 0.001). Dermatologists of all training levels were outperformed by the CNN (all p < 0.001). In confirmation, the CNN's accuracy (83.0%) was significantly higher than dermatologists' accuracies in level II management decisions (all p < 0.001). The CNN's performance was largely confirmed in three additional external data sets but particularly showed a reduced specificity in one Australian data set including FSL on severely sun-damaged skin. CONCLUSIONS: When applied as an assistant system, the CNN's higher sensitivity at an equivalent specificity may result in an improved early detection of face and scalp skin cancers.


Asunto(s)
Dermatólogos/estadística & datos numéricos , Dermoscopía/métodos , Cara/patología , Procesamiento de Imagen Asistido por Computador/métodos , Cuero Cabelludo/patología , Enfermedades de la Piel/clasificación , Enfermedades de la Piel/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...