Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(10): 105101, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319312

RESUMEN

Here, we build and characterize a single-stage gas-gun microparticle accelerator, where a pressurized gas expands and launches particles on a target. The microparticles in the range of 60-250 µm are accelerated by the expansion of pressurized nitrogen. By using a high-speed camera, we study how the velocity distribution of accelerated particles is modified by particle size, pressure in the gas reservoir, valve's opening time, and diaphragm's thickness and composition. We employ this microparticle accelerator to study the impact of glass particles with diameters of (69 ± 6) µm accelerated at moderate velocities ∼ (10-25) m/s, using films of poly-dimethylsiloxane as targets.

2.
ACS Macro Lett ; 10(5): 649-653, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35570757

RESUMEN

We present an experimental study of the dynamics of a well-pronounced secondary relaxation observed in bulk and ultrathin films of the fluorinated copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). In proximity to the glass transition, an anomalous phenomenon is observed: the ß-relaxation slows down upon heating. Measurements as a function of the film thickness show that this exceptional behavior gradually vanishes upon confinement at the nanoscale level. Regardless of sample size, the relaxation dynamics could be described in terms of the Minimal Model via an asymmetric double well potential. Supported by a structural investigation of surfaces and interfaces, our results reveal that the presence of adsorbing walls induces an increase in glass transition temperature, which counterbalances the asymmetry in the double well potential responsible for molecular motion.

3.
Phys Rev Lett ; 121(8): 087801, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30192564

RESUMEN

Experimental data on thin films of cylinder-forming block copolymers (BC)-free-standing BC membranes as well as supported BC films-strongly suggest that the local orientation of the BC patterns is coupled to the geometry in which the patterns are embedded. We analyze this phenomenon using general symmetry considerations and numerical self-consistent field studies of curved BC films in cylindrical geometry. The stability of the films against curvature-induced dewetting is also analyzed. In good agreement with experiments, we find that the BC cylinders tend to align along the direction of curvature at high curvatures. At low curvatures, we identify a transition from perpendicular to parallel alignment in supported films, which is absent in free-standing membranes. Hence both experiments and theory show that curvature can be used to manipulate and align BC patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA