Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(2)2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36851561

RESUMEN

Computationally optimized broadly reactive antigens (COBRAs) are a next-generation universal influenza vaccine candidate. However, how these COBRAs induce antibody responses when combined with different adjuvants has not previously been well-characterized. Therefore, we performed in vivo studies with an HA-based H1 COBRA, Y2, and an NA-based N1 COBRA, N1-I, to assess this effect for the H1N1 subtype. We tested the adjuvants AddaVax, AddaS03, CpG, and Alhydrogel. AddaS03 performed the best, eliciting high IgG titers and hemagglutination inhibition (HAI) activity for Y2 immunizations. Interestingly, serum antibody epitopes were relatively similar across adjuvant groups. Moreover, following N1-I immunization with these adjuvants, AddaS03 also elicited the highest IgG and neuraminidase inhibition (NAI) titers against the 2009 pandemic virus, A/California/07/2009 (A/CA/09). These results inform adjuvant selection efforts for H1 and N1 COBRA HA and NA antigens in a mouse model.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Animales , Ratones , Hemaglutininas , Neuraminidasa , Formación de Anticuerpos , Adyuvantes Inmunológicos , Inmunoglobulina G
2.
Viruses ; 15(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36680239

RESUMEN

Neuraminidase (NA) is an important surface protein on influenza virions, playing an essential role in the viral life cycle and being a key target of the immune system. Despite the importance of NA-based immunity, current vaccines are focused on the hemagglutinin (HA) protein as the target for protective antibodies, and the amount of NA is not standardized in virion-based vaccines. Antibodies targeting NA are predominantly protective, reducing infection severity and viral shedding. Recently, NA-specific monoclonal antibodies have been characterized, and their target epitopes have been identified. This review summarizes the characteristics of NA, NA-specific antibodies, the mechanism of NA inhibition, and the recent efforts towards developing NA-based and NA-incorporating influenza vaccines.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Neuraminidasa , Anticuerpos Monoclonales , Anticuerpos Antivirales , Gripe Humana/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza
3.
J Virol ; 96(16): e0089622, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35916534

RESUMEN

Among circulating influenza viruses in humans, H3N2 viruses typically evolve faster than other subtypes and have caused disease in millions of people since emerging in 1968. Computationally optimized broadly reactive antigen (COBRA) technology is one strategy to broaden vaccine-elicited antibody responses among influenza subtypes. In this study, we determined the structural integrity of an H3N2 COBRA hemagglutinin (HA), TJ5, and we probed the antigenic profile of several H3N2 COBRA HAs by assessing recognition of these immunogens by human B cells from seasonally vaccinated human subjects. Of three recently described COBRA H3 HA antigens (TJ5, NG2, and J4), we determined that TJ5 and J4 HA proteins recognize pre-existing B cells more effectively than NG2 HA and a wild-type Hong Kong/4801/2014 protein. We also isolated a panel of 12 H3 HA-specific human monoclonal antibodies (MAbs) and identified that most MAbs recognize both wild-type and COBRA HA proteins and have functional activity against a broad panel of H3N2 viruses. Most MAbs target the receptor-binding site, and one MAb targets the HA stem. MAb TJ5-5 recognizes TJ5 and J4 COBRA HA proteins but has poor recognition of NG2 HA, similar to the global B-cell analysis. We determined a 3.4 Å structure via cryo-electron microscopy of Fab TJ5-5 complexed with the H3 COBRA TJ5, which revealed residues important to the differential binding. Overall, these studies determined that COBRA H3 HA proteins have correct antigenic and structural features, and the proteins are recognized by B cells and MAbs isolated from seasonally vaccinated humans. IMPORTANCE Vaccine development for circulating influenza viruses, particularly for the H3N2 subtype, remains challenging due to consistent antigenic drift. Computationally optimized broadly reactive antigen (COBRA) technology has proven effective for broadening influenza hemagglutinin (HA)-elicited antibody responses compared to wild-type immunogens. Here, we determined the structural features and antigenic profiles of H3 COBRA HA proteins. Two H3 COBRA HA proteins, TJ5 and J4, are better recognized by pre-existing B cells and monoclonal antibodies from the 2017 to 2018 vaccine season compared to COBRA NG2 and a wild-type A/Hong Kong/2014 HA protein. We determined a cryo-electron microscopy (cryo-EM) structure of one MAb that poorly recognizes NG2, MAb TJ5-5, in complex with the TJ5 COBRA HA protein and identified residues critical to MAb recognition. As NG2 is more effective than TJ5 for the recent Hong Kong/2019 virus, these data provide insights into the diminished effectiveness of influenza vaccines across vaccine seasons.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Monoclonales , Microscopía por Crioelectrón , Hemaglutininas , Humanos , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/química , Gripe Humana/inmunología , Gripe Humana/virología
4.
J Immunol ; 209(1): 5-15, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35697384

RESUMEN

Computationally optimized broadly reactive Ag (COBRA) hemagglutinin (HA) immunogens have previously been generated for several influenza subtypes to improve vaccine-elicited Ab breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We determined the epitope specificity and repertoire characteristics of pre-existing human B cells to H1 COBRA HA Ags. Cross-reactivity between wild-type HA and H1 COBRA HA proteins P1, X6, and Y2 were observed for isolated mAbs. The mAbs bound five distinct epitopes on the pandemic A/California/04/2009 HA head and stem domains, and most mAbs had hemagglutination inhibition and neutralizing activity against 2009 pandemic H1 strains. Two head-directed mAbs, CA09-26 and CA09-45, had hemagglutination inhibition and neutralizing activity against a prepandemic H1 strain. One mAb, P1-05, targeted the stem region of H1 HA, but did not compete with a known stem-targeting H1 mAb. We determined that mAb P1-05 recognizes a recently discovered HA epitope, the anchor epitope, and we identified similar mAbs using B cell repertoire sequencing. In addition, the trimerization domain distance from HA was critical to recognition of this epitope by mAb P1-05, suggesting the importance of protein design for vaccine formulations. Overall, these data indicate that seasonally vaccinated individuals possess a population of functional H1 COBRA HA-reactive B cells that target head, central stalk, and anchor epitopes, and they demonstrate the importance of structure-based assessment of subunit protein vaccine candidates to ensure accessibility of optimal protein epitopes.


Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA