Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Front Chem ; 12: 1377144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666046

RESUMEN

Some drawbacks of aqueous electrolytes, such as freezing at low temperatures and extensive evaporation at high temperatures, restrict their industrial viability. This article introduces a stabilized neutral aqueous choline nitrate electrolyte with a 10 vol.% methanol additive that improves the temperature stability of the electrolyte via enhanced hydrogen bonding with the choline cation and water and maintains the good state of health of the supercapacitor cells under extreme operating conditions. The symmetric carbon/carbon supercapacitor in 5 mol/kg choline nitrate + 10 vol.% methanol (σ = 76 ms/cm at 25°C) exhibits 103 F/g at room temperature during galvanostatic charge/discharge up to 1.5 V, which decreases to 78 F/g at -40°C due to the suppressed Faradaic reactions occurring at the carbon electrode. However, under similar charge/discharge conditions, the capacitance increases to 112 F/g when the supercapacitor operates at 60°C. This capacitance increase at high temperatures is due to the Faradaic reactions related to enhanced hydrogen adsorption and desorption. The most remarkable aspect of the proposed supercapacitor is its ability to maintain capacitance and power performance during high voltage floating at 1.5 V at three tested temperatures (-40°C, 24°C, and 60°C).

2.
BMC Chem ; 18(1): 47, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448974

RESUMEN

In the current study, Azo-Thiohydantoins derivatives were synthesized and characterized by using various spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, elemental and HRMS analysis. The compounds were evaluated for alkaline phosphatase activity and it was observed that among all the synthesized compounds, derivative 7e exhibited substantial inhibitory activity (IC50 = 0.308 ± 0.065 µM), surpassing the standard inhibitor (L-Phenyl alanine, IC50 = 80.2 ± 1.1 µM). Along with this, these derivatives were comprehensively examined regarding the electronic properties and reactivity of the synthesized compounds using Density Functional Theory (DFT) calculations, where the results were found very promising and the synthesized compound were found stable. After that, SwissADME evaluations highlighted compounds for their favorable physicochemical properties, including solubility and drug-likeness. Molecular docking exhibited the strong binding affinities of 7f and 7e derivatives with intestinal alkaline phosphatase (IAP), further supported by Molecular Dynamics (MD) simulations. This comprehensive integration of experimental and computational approaches sheds the light on the potential therapeutic applications of the synthesized compounds. By providing a detailed investigation of these aspects, this research opens the avenues for the development of novel pharmacologically active compounds with diverse applications.

3.
ACS Omega ; 9(4): 4733-4743, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313518

RESUMEN

Valorization of the lignocellulosic side and waste streams is key to making industrial processes more efficient from both an economic and ecological perspective. Currently, the production of sugars from beets results in pulps in large quantities. However, there is a lack of promising opportunities for upcycling these materials despite their promising properties. Here, we investigate beet pulps from two different stages of the sugar manufacturing process as raw materials for supercapacitor electrodes. We demonstrate that these materials can be efficiently converted to activated, highly porous carbons. The carbons exhibit pore dimensions approaching the size of the desolvated K+ and SO42- ions with surface areas up to 2600 m2 g-1. These carbons were subsequently manufactured into electrodes, assembled in supercapacitors, and tested with environmentally friendly aqueous electrolytes (6 M KOH and 1 M H2SO4). Further analysis demonstrated the presence of capacitance-enhancing functionalities, and up to 193 and 177 F g-1 in H2SO4 and KOH, respectively, were achieved, which outperformed supercapacitors prepared from commercial YP80 F. Overall, our study suggests that side streams from sugar manufacturing offer a hidden potential for use in high-performance energy storage devices.

4.
Heliyon ; 10(1): e23883, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226215

RESUMEN

The increasing trend in sustainable economic growth over the last few decades has elevated the energy demand, technological innovation, and access to minerals resources are contributing well to economic development. This article investigates the nexus among minerals resource complexity, energy consumption, technology, and economic growth by employing autoregressive distributed lag and vector error correction techniques for Pakistan from 1995 to 2021. Following thorough research, the long-term results show that an important 9.73 points of economic growth result from every 1 % increase in the complexity of natural resources. On the other hand, technology and energy use negatively affect economic growth, causing drops of -0.03 and -12.9 points, respectively. One-way causality was noted between mineral resources' complexity and economic growth. Moreover, a one-sided causality effect was also confirmed between energy use, technology, and economic growth. Additionally, it was predicted that there is a neutral causality between mineral resources and technology. Corresponding to this, technology and energy consumption have a bidirectional causal relationship. These results imply that energy consumption, technological advancements, and mineral resources contribute as major economic growth drivers and can improve environmental quality.

5.
Environ Sci Pollut Res Int ; 31(3): 4348-4364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38102427

RESUMEN

The BRICS countries are important contributors to global efforts aimed at preventing a climate catastrophe. These countries account for half of the total emissions generated by the G20 nations. In this context, this paper examines the relationship between total factor productivity (TFP) and CO2 emissions (CE) in BRICS countries from 1996 to 2022, with institutional quality serving as a moderating factor. Moreover, a diverse range of methodologies was employed to address the problem of cross-sectional dependence; i.e., the CS-ARDL technique is used to analyze the relationship between variables in both the long and short-run. The AMG and CCEMG methods are employed for robustness analysis, while the Dumitrescu-Hurlin causality test is used to assess causality. Our empirical analysis demonstrates that TFP is positively associated with CE. Conversely, we find that institutional quality has a negative impact on CE. Furthermore, the study confirms that the interaction between TFP and institutional quality has a negative effect on CE. This implies that an improvement in institutional quality leads to a decrease in CE, as it strengthens the regulatory system governing CE and reduces pollution. Environmental policy must include economic flexibility and policy unpredictability in order to meet CO2 reduction targets. In addition, the study has identified bidirectional causal links between CE and variables such as TFP, institutional quality, and other control variables. According to our study, the BRICS countries should encourage digitalization and renewable energy production while preserving a reasonable standard of institutional quality since they have significant resource advantages in the renewable energy sector.


Asunto(s)
Dióxido de Carbono , Desarrollo Económico , Estudios Transversales , Políticas , Política Ambiental , Energía Renovable
6.
Int J Biol Macromol ; 253(Pt 2): 126711, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673141

RESUMEN

The genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0039, which encodes a putative DNA ligase. Structural analysis disclosed the presence of signature sequences of ATP-dependent DNA ligases. We have heterologously expressed Pcal_0039 gene in Escherichia coli. The recombinant protein, majorly produced in soluble form, was purified and functionally characterized. Recombinant Pcal_0039 displayed nick-joining activity between 40 and 85 °C. Optimal activity was observed at 70 °C and pH 5.5. Nick-joining activity was retained even after heating for 1 h at 90 °C, indicating highly thermostable nature of Pcal_0039. The nick-joining activity, displayed by Pcal_0039, was metal ion dependent and Mg2+ was the most preferred. NaCl and KCl inhibited the nick-joining activity at or above 200 mmol/L. The activity catalyzed by recombinant Pcal_0039 was independent of addition of ATP or NAD+ or any other nucleotide cofactor. A mismatch adjacent to the nick, either at 3'- or 5'-end, abolished the nick-joining activity. These characteristics make Pcal_0039 a potential candidate for applications in DNA diagnostics. To the best of our knowledge, Pcal_0039 is the only DNA ligase, characterized from genus Pyrobaculum, which exhibits optimum nick-joining activity at pH below 6.0 and independent of any nucleotide cofactor.


Asunto(s)
Pyrobaculum , Pyrobaculum/genética , NAD/metabolismo , Estabilidad de Enzimas , ADN Ligasa (ATP)/metabolismo , ADN Ligasas/genética , ADN Ligasas/metabolismo , Archaea/metabolismo , Clonación Molecular , Adenosina Trifosfato/metabolismo
7.
Heliyon ; 9(8): e18574, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576208

RESUMEN

This study attempts to investigate the mediating role of institutional quality on the relationship between public debt and economic growth in Pakistan spanning 1996-2020. Time series data on all six World Bank World Governance indicators of institutional quality is used in the empirical analysis. Findings of the autoregressive distributed lag (ARDL) bounds testing technique and error correction method (ECM) confirmed the existence of cointegration among variables of interest. The short-run results indicate that public debt has a favorable association with economic growth, while the relationship is found to be detrimental in the long run. Furthermore, the combined effect of public debt and institutional quality indicators revealed the significant positive association with economic growth, suggesting that better institutional quality can contribute to mitigate the negative impact of public debt on economic growth in Pakistan.

8.
BMC Chem ; 17(1): 95, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550776

RESUMEN

A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, ß = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.

9.
Comput Biol Med ; 163: 107167, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37421740

RESUMEN

Federated Learning (FL) is an emerging distributed learning paradigm which offers data privacy to contributing nodes in the collaborating environment. By exploiting the Individual datasets of different hospitals in FL setting could be used to develop reliable screening, diagnosis, and treatment predictive models to tackle major challenges such as pandemics. FL can enable the development of very diverse medical imaging datasets and thus provide more reliable models for all participating nodes, including those with low quality data. However, the issue with the traditional Federated Learning paradigm is the degradation of generalization power due to poorly trained local models at the client nodes. The generalization power of the FL paradigm can be improved by considering the relative learning contribution of client nodes. Simple aggregation of learning parameters in the standard FL model faces a diversity issue and results in more validation loss during the learning process. This issue can be resolved by considering the relative contribution of each client node participating in the learning process. The class imbalance at each site is another significant challenge that greatly impacts the performance of the aggregated learning model. This work considers Context Aggregator FL based on the context of loss-factor and class-imbalance issues by incorporating the relative contribution of the collaborating nodes in FL by proposing Validation-Loss based Context Aggregator (CAVL) and Class Imbalance based Context Aggregator (CACI). The proposed Context Aggregator is evaluated on several different Covid-19 imaging classification datasets present on participating nodes. The evaluation results show that Context Aggregator performs better than standard Federating average Learning algorithms and FedProx Algorithm for Covid-19 image classification problems.


Asunto(s)
COVID-19 , Humanos , Algoritmos , Exactitud de los Datos , Hospitales , Pandemias
10.
Med Chem Res ; 32(6): 1077-1086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305207

RESUMEN

Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.

11.
Nanomaterials (Basel) ; 13(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37177090

RESUMEN

The charging of nanoporous carbon via electrodeposition of solid iodine from iodide-based electrolyte is an efficient and ecofriendly method to produce battery cathodes. Here, the interactions at the carbon/iodine interface from first contact with the aqueous electrolyte to the electrochemical polarization conditions in a hybrid cell are investigated by a combination of in situ and ex situ methods. EQCM investigations confirm the flushing out of water from the pores during iodine formation at the positive electrode. XPS of the carbon surface shows irreversible oxidation at the initial electrolyte immersion and to a larger extent during the first few charge/discharge cycles. This leads to the creation of functional groups at the surface while further reactive sites are consumed by iodine, causing a kind of passivation during a stable cycling regime. Two sources of carbon electrode structural modifications during iodine formation in the nanopores have been revealed by in situ Raman spectroscopy, (i) charge transfer and (ii) mechanical strain, both causing reversible changes and thus preventing performance deterioration during the long-term cycling of energy storage devices that use iodine-charged carbon electrodes.

12.
Sci Rep ; 13(1): 3606, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869200

RESUMEN

Vigna radiata L., an imperative legume crop of Pakistan, faces hordes of damage due to fungi; infecting host tissues by the appressorium. The use of natural compounds is an innovative concern to manage mung-bean fungal diseases. The bioactive secondary metabolites of Penicillium species are well documented for their strong fungi-static ability against many pathogens. Presently, one-month-old aqueous culture filtrates of Penicillium janczewskii, P. digitatum, P. verrucosum, P. crustosum, and P. oxalicum were evaluated to check the antagonistic effect of different dilutions (0, 10, 20, … and 60%). There was a significant reduction of around 7-38%, 46-57%, 46-58%, 27-68%, and 21-51% in Phoma herbarum dry biomass production due to P. janczewskii, P. digitatum, P. verrucosum, P. crustosum, and P. oxalicum, respectively. Inhibition constants determined by a regression equation demonstrated the most significant inhibition by P. janczewskii. Finally, using real-time reverse transcription PCR (qPCR) the effect of P. Janczewskii metabolites was determined on the transcript level of StSTE12 gene involved in the development and penetration of appressorium. The expression pattern of the StSTE12 gene was determined by percent Knockdown (%KD) expression that was found to be decreased i.e. 51.47, 43.22, 40.67, 38.01, 35.97, and 33.41% for P. herbarum with an increase in metabolites concentrations viz., 10, 20, 30, 40, 50 and 60% metabolites, respectively. In silico studies were conducted to analyze the role of Ste12 a transcriptional factor in the MAPK signaling pathway. The present study concludes a strong fungicidal potential of Penicillium species against P. herbarum. Further studies to isolate the effective fungicidal constituents of Penicillium species through GCMS analysis and determination of their role in signaling pathways are requisite.


Asunto(s)
Fabaceae , Fungicidas Industriales , Penicillium , Vigna , Transducción de Señal
13.
J Environ Manage ; 337: 117706, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933533

RESUMEN

The present study was done to investigate and compare the photocatalytic and antibacterial activity of two in situ Manganese doped ternary nanocomposites. The dual ternary hybrid systems comprised Mn-doped Ag2WO4 coupled with MoS2-GO and Mn-doped MoS2 coupled with Ag2WO4-GO. Both hierarchical alternate Mn-doped ternary heterojunctions formed efficient plasmonic catalysts for wastewater treatment. The novel nanocomposites were well-characterized using XRD, FTIR, SEM-EDS, HR-TEM, XPS, UV-VIS DRS, and PL techniques confirming the successful insertion of Mn+2 ions in respective host substrates. The bandgap of the ternary nanocomposites evaluated by the tauc plot showed them visible light-active nanocomposites. The photocatalytic ability of both Mn-doped coupled nanocomposites was investigated against the dye methylene blue. Both ternary nanocomposites showed excellent sunlight harvesting ability for dye degradation in 60 min. The maximum catalytic efficiency of both photocatalysts was obtained at a solution pH value of 8, photocatalyst dose and oxidant dose of 30 mg/100 mL and 1 mM for Mn-Ag2WO4/MoS2-GO, 50 mg/100 mL, 3 mM for Mn-MoS2/Ag2WO4-GO keeping IDC of 10 ppm for all photocatalysts. The nanocomposites showed excellent photocatalytic stability after five successive cycles. The response surface methodology was used as a statistical tool for the evaluation of the photocatalytic response of several interacting parameters for dye degradation by ternary composites. The antibacterial activity was determined by the inactivation of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria by support-based doped ternary hybrids.


Asunto(s)
Molibdeno , Nanocompuestos , Luz , Antibacterianos/farmacología , Luz Solar , Nanocompuestos/química , Catálisis
14.
Food Addit Contam Part B Surveill ; 16(1): 69-76, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35909386

RESUMEN

Sudan dyes were investigated in branded and non-branded spices, commonly available in the markets of Karachi, Pakistan. High performance liquid chromatography (HPLC) with a variable wavelength detector (VWD) was applied to determine Sudan dyes I-IV. The non-branded samples had higher concentrations of Sudan dyes than the maximum limits of 0.1 mg/kg. The highest concentration of Sudan dye (I) was found in turmeric powder (8460 mg/kg) and the lowest concentration (1.50 mg/kg) of Sudan (IV) in Chaat Masala. This indicates that the use of non-branded spices is not safe, whereas no Sudan dye was found in the branded spice samples. Further studies regarding the higher carcinogenic risk posed by Sudan dye adulterated spices in Pakistan is strongly advised.


Asunto(s)
Colorantes , Especias , Colorantes/análisis , Especias/análisis , Pakistán , Contaminación de Alimentos/análisis , Cromatografía Líquida de Alta Presión/métodos , Compuestos Azo/análisis
15.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502215

RESUMEN

Metaheuristic algorithms are effectively used in searching some optical solution space. for optical solution. It is basically the type of local search generalization that can provide useful solutions for issues related to optimization. Several benefits are associated with this type of algorithms due to that such algorithms can be better to solve many issues in an effective way. To provide fast and accurate solutions to huge range of complex issues is one main benefit metaheuristic algorithms. Some metaheuristic algorithms are effectively used to classify the problems and BAT Algorithm (BA) is one of them is more popular in use to sort out issues related to optimization of theoretical and realistic. Sometimes BA fails to find global optima and gets stuck in local optima because of the absence of investigation and manipulation. We have improved the BA to boost its local searching ability and diminish the premature problem. An improved equation of search with more necessary information through the search is set for the generation of the solution. Test set of benchmark functions are utilized to verify the proposed method's performance. The results of simulation showed that proposed methods are best optimal solution as compare to others.


Asunto(s)
Algoritmos , Benchmarking , Simulación por Computador , Frecuencia Cardíaca
16.
Biomolecules ; 12(11)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36421710

RESUMEN

Carbonic anhydrases (CA), having Zn2+ metal atoms, are responsible for the catalysis of CO2 and water to bicarbonate and protons. Any abnormality in the functioning of these enzymes may lead to morbidities such as glaucoma and different types of cancers including brain, renal and pancreatic carcinomas. To cope with the lack of presence of a promising therapeutic agent against these cancers, searching for an efficient and suitable carbonic anhydrase inhibitor is crucial. In the current study, ten novel 3-ethylaniline hybrid imino-thiazolidinones were synthesized and characterized by FTIR, NMR (1H, 13C), and mass spectrometry. Synthesis was carried out by diethyl but-2-ynedioate cyclization and different acyl thiourea substitutions of 3-ethyl amine. The CA (II) enzyme inhibition profile for all synthesized derivatives was determined. It was observed that compound 6e demonstrated highest inhibition of CA-II with an IC50 value of 1.545 ± 0.016 µM. In order to explore the pharmacophoric properties and develop structure activity relationship, in silico screening was performed. In silico investigations included density functional theory (DFT) studies, pharmacophore-guided model development, molecular docking, molecular dynamic (MD) simulations, and prediction of drug likeness scores. DFT investigations provided insight into the electronic characteristics of compounds, while molecular docking determined the binding orientation of derivatives within the CA-II active site. Compounds 6a, 6e, and 6g had a reactive profile and generated stable protein-ligand interactions with respective docking scores of -6.12, -6.99, and -6.76 kcal/mol. MD simulations were used to evaluate the stability of the top-ranked complex. In addition, pharmacophore-guided modeling demonstrated that compound 6e produced the best pharmacophore model (HHAAARR) compared to standard brinzolamide. In vitro and in silico investigations anticipated that compound 6e would be an inhibitor of carbonic anhydrase II with high efficacy. Compound 6e may serve as a potential lead for future synthesis that can be investigated at the molecular level, and additional in vivo studies are strongly encouraged.


Asunto(s)
Anhidrasa Carbónica II , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Cinética , Inhibidores de Anhidrasa Carbónica/farmacología
17.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361953

RESUMEN

The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 µM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.


Asunto(s)
Monofenol Monooxigenasa , Ribonucleótido Reductasas , Tionas/farmacología , Simulación del Acoplamiento Molecular , Acetofenonas/farmacología , ADN
18.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235300

RESUMEN

The current study focused on the laboratory approach in conjunction with computational methods for the synthesis and bioactivity assessment of unique 2-tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines (2a-2k). Processes included cyclizing 1-aroyl-3-arylthioureas with propan-2-one in the presence of trimethylamine and bromine. By using spectroscopic techniques and elemental analyses, structures were elucidated. To assess the electronic properties, density functional theory (DFT) calculations were made, while binding interactions of synthesized derivatives were studied by the molecular docking tool. Promising results were found during the evaluation of bioactivity of synthesized compounds against alkaline phosphatase. The drug likeliness score, an indicator used for any chemical entity posing as a drug, was within acceptable limits. The data suggested that most of the derivatives were potent inhibitors of alkaline phosphatase, which in turn may act as lead molecules to synthesize derivatives having desired pharmacological profiles for the treatment of specific diseases associated with abnormal levels of ALPs.


Asunto(s)
Fosfatasa Alcalina , Bromo , Fosfatasa Alcalina/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
19.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232944

RESUMEN

Urease is an amidohydrolase enzyme that is responsible for fatal morbidities in the human body, such as catheter encrustation, encephalopathy, peptic ulcers, hepatic coma, kidney stone formation, and many others. In recent years, scientists have devoted considerable efforts to the quest for efficient urease inhibitors. In the pharmaceutical chemistry, the thiourea skeleton plays a vital role. Thus, the present work focused on the development and discovery of novel urease inhibitors and reported the synthesis of a set of 1-aroyl-3-[3-chloro-2-methylphenyl] thiourea hybrids with aliphatic and aromatic side chains 4a-j. The compounds were characterized by different analytical techniques including FT-IR, 1H-NMR, and 13C-NMR, and were evaluated for in-vitro enzyme inhibitory activity against jack bean urease (JBU), where they were found to be potent anti-urease inhibitors and the inhibitory activity IC50 was found in the range of 0.0019 ± 0.0011 to 0.0532 ± 0.9951 µM as compared to the standard thiourea (IC50 = 4.7455 ± 0.0545 µM). Other studies included density functional theory (DFT), antioxidant radical scavenging assay, physicochemical properties (ADMET properties), molecular docking and molecular dynamics simulations. All compounds were found to be more active than the standard, with compound 4i exhibiting the greatest JBU enzyme inhibition (IC50 value of 0.0019 ± 0.0011 µM). The kinetics of enzyme inhibition revealed that compound 4i exhibited non-competitive inhibition with a Ki value of 0.0003 µM. The correlation between DFT experiments with a modest HOMO-LUMO energy gap and biological data was optimal. These recently identified urease enzyme inhibitors may serve as a starting point for future research and development.


Asunto(s)
Antioxidantes , Tiourea , Antioxidantes/farmacología , Canavalia/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Tiourea/química , Tiourea/farmacología , Ureasa/metabolismo
20.
Sci Rep ; 12(1): 16568, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195624

RESUMEN

Climate change, pesticide resistance, and the need for developing new plant varieties have galvanized biotechnologists to find new solutions in order to produce transgenic plants. Over the last decade scientists are working on green metallic nanoparticles to develop DNA delivery systems for plants. In the current study, green Iron nanoparticles were synthesized using leaf extract of Camellia sinensis (green tea) and Iron Chloride (FeCl3), the characterization and Confirmation was done using UV-VIS Spectroscopy, FTIR, SEM, and TEM. Using these nanoparticles, a novel method of gene transformation in okra plants was developed, with a combination of different Magnetofection factors. Maximum gene transformation efficiency was observed at the DNA to Iron-nanoparticles ratio of 1:20, by rotation of mixture (Plasmid DNA, Iron-nanoparticles, and seed embryo) at 800 rpm for 5 h. Using this approach, the transformation of the GFP (green fluorescent protein) gene was successfully carried out in Abelmoschus esculentus (Okra plant). The DNA transformation was confirmed by observing the expression of transgene GFP via Laser Scanning Confocal Microscope (LSCM) and PCR. This method is highly economical, adaptable, genotype independent, eco-friendly, and time-saving as well. We infer that this approach can be a potential solution to combat the yield and immunity challenges of plants against pathogens.


Asunto(s)
Abelmoschus , Nanopartículas del Metal , Nanopartículas , Plaguicidas , Abelmoschus/química , Cloruros , Tecnología Química Verde/métodos , Proteínas Fluorescentes Verdes , Hierro , Nanopartículas del Metal/química , Extractos Vegetales/química , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...