Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Plant Sci ; 13: 1037632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466283

RESUMEN

Modern era of agriculture is concerned with the environmental influence on crop growth and development. Shading is one of the crucial factors affecting crop growth considerably, which has been neglected over the years. Therefore, a two-year field experiment was aimed to investigate the effects of shading at flowering (S1) and pod development (S2) stages on nitrogen (N) dynamics, carbohydrates and yield of rapeseed. Two rapeseed genotypes (Chuannong and Zhongyouza) were selected to evaluate the effects of shading on 15N trace isotopes, enzymatic activities, dry matter, nitrogen and carbohydrate distribution and their relationship with yield. The results demonstrated that both shading treatments disturbed the nitrogen accumulation and transportation at the maturity stage. It was found that shading induced the downregulation of the N mobilizing enzymes (NR, NiR, GS, and GOGAT) in leaves and pods at both developmental stages. Shading at both growth stages resulted in reduced dry matter of both varieties but only S2 exhibited the decline in pod shell and seeds dry weight in both years. Besides this, carbohydrates distribution toward economic organs was declined by S2 treatment and its substantial impact was also experienced in seed weight and seeds number per pod which ultimately decreased the yield in both genotypes. We also revealed that yield is positively correlated with dry matter, nitrogen content and carbohydrates transportation. In contrast to Chuannong, the Zhongyouza genotype performed relatively better under shade stress. Overall, it was noticed that shading at pod developmental stage considerable affected the transportation of N and carbohydrates which led to reduced rapeseed yield as compared to shading at flowering stage. Our study provides basic theoretical support for the management techniques of rapeseed grown under low light regions and revealed the critical growth stage which can be negatively impacted by low light.

3.
AMB Express ; 11(1): 160, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855004

RESUMEN

Hepatocellular carcinoma is one of the leading causes of cancer-associated death across the globe. Malignant ascites are the major clinical attributes in cancer patients. Despite the advancements in HCC treatments such as chemotherapy, radiotherapy, surgery, and hormonal therapy, researchers are pursuing novel natural edible compounds for the treatment of cancer to eliminate dreadful side effects. Pleurotus ostreatus is one of the most edible cuisines in Asia as well as all over the world. It has been a source of nutritious diet since it was classified as an edible mushroom with no or negligible side effects. The present study focused on the natural anti-cancerous and anti-ascites capabilities of polysaccharides extracted from Pleurotus ostreatus in-vivo as well as in-vitro. Administration of polysaccharide Pleurotus ostreatus showed a significant decrease in tumor cell metastasis while the increase in the survival period among mice models of H22 malignant ascites. Downregulation of regenerative genes Foxp3 and Stat3 and secretion of immunological factors such as IL-2, TNF α, and INF γ were observed after treating with the partially pure extracted polysaccharide. Twining with the hypothesis of tumor suppression in-vivo model polysaccharide showed a decrease in invasion and migration abilities and henceforth responsible for the gene regulation such Cytochrome C which supposedly induced the chain of gene regulation process resulting in apoptosis in HCC cell lines observed in-vitro experiments. Collective research findings manifested that polysaccharide extracted from Pleurotus ostreatus bears anti-proliferative activity and thus influence tumor suppression in-vivo and in-vitro against hepatocellular carcinoma and can be used for therapeutic purposes as a potential anti-cancerous source in the future.

4.
J Cosmet Laser Ther ; 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513251

RESUMEN

BACKGROUND: This study aimed to evaluate the effectiveness of a combined set of low level diode laser scanner (665 nm and 808nm) on hair growth, and assessment of safety and effectiveness of a new laser scanner on hair growth treatment procedure in androgenic alopecia. METHODS: 90 patients (18 to 70 years) with androgenic alopecia were randomized into three groups. The first group (n=30) received 655 nm red light using laser hat, the second group (n=30) received 655 nm red laser plus 808 nm infrared laser using a laser scanner of hair growth device (with the patent number: 77733) and the third group (n=30) received no laser as the control group. RESULTS: Patients in laser scanner group had better results and showed a higher increase in terminal hair density compared with laser hat group (mean of 9.61 versus 9.16 per cm2). We found significant decrease in terminal hair density from baseline in control group (mean -1.8 per cm2, p<0.0001). CONCLUSION: Results showed a statistically significant improvement in the laser scanner of the hair growth group compared with laser hat and the control group. The study showed that treatment with new laser devise had a promising result without any observable adverse effects.

5.
ACS Nano ; 9(11): 10991-1002, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26482120

RESUMEN

Transmitted Kikuchi diffraction (TKD) is an emerging SEM-based technique that enables investigation of highly refined grain structures. It offers higher spatial resolution by utilizing conventional electron backscattered diffraction equipment on electron-transparent samples. A successful attempt has been made to reveal nano-oxide grain structures as well as ultrafine severely deformed metallic grains. The effect of electron beam current was studied. Higher beam currents enhance pattern contrast and intensity. Lower detector exposure times could be employed to accelerate the acquisition time and minimize drift and carbon contamination. However, higher beam currents increase the electron interaction volume and compromise the spatial resolution. Lastly, TKD results were compared to orientation mapping results in TEM (ASTAR). Results indicate that a combination of TKD and EDS is a capable tool to characterize nano-oxide grains such as Al2O3 and Cr2O3 with similar crystal structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...