Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15271, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961170

RESUMEN

Localizing sources in the near-field is one of the emerging challenges for array signal processing, which has received a great deal of attention in recent years. The development of accurate localization algorithms requires the definition of a reliable model of the received signal that takes into account all wavefront characteristics, such as angle, range, and polarization, as well as electromagnetic effects, such as mutual coupling between antennas and the amplitude and phase behaviour of electromagnetic wavefronts. A system model that considers the electromagnetic-informed wave behaviour effects, independent of the type of receiver antennas, array structure, degree of correlation of sources signals and other electromagnetic effects, is considered an " exact model " in the literature. However, due to the mathematical complexity of this modeling approach, simplifications using several approximations are conventionally used. For instance, the phase of the exact model is approximated using the Fresnel approximation, while the magnitude of the exact model is simplified by assuming equal distances between the source and all elements in the array. In this work, we evaluate the accuracy of a localization algorithm, the multiple signal classification (MUSIC), using the exact and approximated models in the near-field region. Through a series of simulations, we demonstrate that the localization algorithm designed based on the electromagnetic-informed exact model outperforms the one designed using the approximated model. We also show that considering electromagnetic factors in the system model through the exact model results in a 13% improvement in the direction of arrival (DOA) root mean square error (RMSE) and a 57.7% improvement in range RMSE at signal-to-noise ratio (SNR) of 15 dB.

2.
Sci Rep ; 12(1): 8511, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595805

RESUMEN

This paper presents a millimeter-wave direction of arrival estimation (DoA) technique powered by dynamic aperture optimization. The frequency-diverse medium in this work is a lens-loaded oversized mmWave cavity that hosts quasi-random wave-chaotic radiation modes. The presence of the lens is shown to confine the radiation within the field of view and improve the gain of each radiation mode; hence, enhancing the accuracy of the DoA estimation. It is also shown, for the first time, that a lens loaded-cavity can be transformed into a lens-loaded dynamic aperture by introducing a mechanically controlled mode-mixing mechanism inside the cavity. This work also proposes a way of optimizing this lens-loaded dynamic aperture by exploiting the mode mixing mechanism governed by a machine learning-assisted evolutionary algorithm. The concept is verified by a series of extensive simulations of the dynamic aperture states obtained via the machine learning-assisted evolutionary optimization technique. The simulation results show a 25[Formula: see text] improvement in the conditioning for the DoA estimation using the proposed technique.

3.
Sci Rep ; 11(1): 23830, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903786

RESUMEN

This paper presents a single-pixel polarimetric compressive sensing (CS)-based direction of arrival (DoA) estimation technique using a cavity backed programmable coding metasurface aperture. The single-pixel DoA retrieval technique relies on a dynamically modulated waveform diversity, enabling spatially incoherent radiation masks to encode the incoming plane waves on the radar aperture using a single channel. The polarimetric nature of the wave-chaotic coded metasurface ensures that the DOA estimation is sensitive to the polarization state of the incoming waves. We show that the polarimetric single-pixel DoA concept can be realized by encoding the polarization information of the incoming waves at the physical layer level within the antenna. A dynamically reconfigurable wave-chaotic metasurface, which possesses a structured sparsity of dual-polarized coded metamaterial elements, is proposed for the proof of concept. It is shown that by encoding and compressing the source generated far-field incident waves into a single channel, we can retrieve high fidelity polarimetric DoA information from compressed measurements.

4.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960545

RESUMEN

In this paper, we present the application of a resonant electric based metamaterial element and its two-dimensional metasurface implementation for a variety of emerging wireless applications. Metasurface apertures developed in this work are synthesized using sub-wavelength sampled resonant electric-based unit-cell structures and can achieve electromagnetic wave manipulation at microwave frequencies. The presented surfaces are implemented in a variety of forms, from absorption surfaces for energy harvesting and wireless power transfer to wave-chaotic surfaces for compressive sensing based single-pixel direction of arrival estimation and reflecting surfaces. It is shown that the resonant electric-synthesized metasurface concept offers a significant potential for these applications with high fidelity absorption, transmission and reflection characteristics within the microwave frequency spectrum.

5.
Sci Rep ; 11(1): 22739, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815440

RESUMEN

Antenna arrays and multi-antenna systems are essential in beyond 5G wireless networks for providing wireless connectivity, especially in the context of Internet-of-Everything. To facilitate this requirement, beamforming technology is emerging as a key enabling solution for adaptive on-demand wireless coverage. Despite digital beamforming being the primary choice for adaptive wireless coverage, a set of applications rely on pure analogue beamforming approaches, e.g., in point-to-multi point and physical-layer secure communication links. In this work, we present a novel scalable analogue beamforming hardware architecture that is capable of adaptive 2.5-dimensional beam steering and beam shaping to fulfil the coverage requirements. Beamformer hardware comprises of a finite size Maxwell fisheye lens used as a scalable feed network solution for a semi-circular array of monopole antennas. This unique hardware architecture enables a flexibility of using 2 to 8 antenna elements. Beamformer development stages are presented while experimental beam steering and beam shaping results show good agreement with the estimated performance.

6.
Sci Rep ; 11(1): 4928, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654137

RESUMEN

This paper investigates uni-/multi-cast and orbital angular momentum (OAM) mode data transmission in orthogonal directions by the utilization of a new circular antenna array, operating at 28 GHz. In the horizontal plane the proposed antenna array operates as multimode transmitter (i.e., it provides broad-, uni- and/or multi-cast communication), while in the vertical direction OAM transmission occurs (i.e., it is capable of generating up to 15 spatially orthogonal OAM modes). Antenna array is designed using twelve, low-complexity, electromagnetically coupled microstrip patch antennas with high radiation efficiency. Each of these can transmit power of equivalent order of magnitude in both horizontal (i.e., broadside radiation pattern) and vertical direction (i.e., endfire radiation pattern) over electromagnetic waves of orthogonal electric components. This property leads to the formation of uni-/multi-cast and OAM modes in the horizontal plane and vertical direction, respectively. Antenna was tested through full-wave electromagnetic analysis and measurements in terms of impedance matching, mutual coupling and radiation pattern: good agreement between simulated and measurement results was observed. Specifically, it presents up to 8.65 dBi and 6.48 dBi realized gain under the uni-cast (in the horizontal plane) and OAM mode (in the vertical plane), respectively. The proposed antenna array is perfect candidate for high spectral efficiency data transmission for 5G and beyond wireless applications, where orthogonality in communication links and OAM multiplexing is a requirement.

7.
Sci Rep ; 9(1): 16244, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700160

RESUMEN

A Maxwell fisheye lens using parallel plate index grading is presented in this study to develop a passive retrodirective antenna array. As a proof-of-concept a design frequency of 10 GHz was selected for fabrication and experiment. The design principals of the lens are discussed, which enables 85% energy flow at the drain probe (also referred to as image point) of the lens. It is shown that the image in the Maxwell fisheye lens has a point symmetry with a reverse phase, which makes it possible to realize passive retrodirective action using the lens. This arrangement is significantly more practical than previous passive retrodirective topologies due to the un-constrained number of connections to radiating elements that it can support without the need for multi-layer technology. In the realization described here, a cross-polarized microstrip patch antenna array is connected to the source and drain probes of the lens structure in order to form the retrodirective array. The strategy for selecting the optimal transmission line lengths required to connect the antennas to the lens for maximum re-radiation power is described and implemented. Experimental results for a prototype high efficiency passive retrodirective array based on the theoretical design considerations presented in this paper are reported.

8.
Sci Rep ; 9(1): 16704, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723176

RESUMEN

We present a frequency-diverse based direction of arrival (DoA) estimation technique for millimetre-wave (mmW) 5G channel sounding. Frequency-diversity enables the creation of spatially incoherent radiation masks to encode the plane-wave signals incident on the radar aperture using a single antenna. Leveraging the frequency-diversity concept, spatial information of the plane-wave projections on the radar aperture is retrieved, resulting in high-fidelity DoA estimations by means of a simple Fourier transform operation applied to the retrieved plane-wave projection patterns. It is demonstrated that using the frequency-diversity concept, DoA estimation can be achieved through a simple frequency sweep, compressing the incoming plane-waves into a single channel through the transfer function of the radar aperture. This results in a significant simplification in the system hardware, requiring only a single antenna to achieve DoA estimation. It is also shown that the proposed technique can simultaneously detect the DoA information for multiple sources with a diffraction limited resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA