Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Oncol ; 39(30): 3352-3363, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34464155

RESUMEN

PURPOSE: Prognosis for adult B-cell acute lymphoblastic leukemia (B-ALL) is poor, and there are currently no licensed CD19 chimeric antigen receptor (CAR) therapeutics. We developed a novel second-generation CD19-CAR (CAT19-41BB-Z) with a fast off rate, designed for more physiologic T-cell activation to reduce toxicity and improve engraftment. We describe the multicenter phase I ALLCAR19 (NCT02935257) study of autologous CAT19-41BB-Z CAR T cells (AUTO1) in relapsed or refractory (r/r) adult B-ALL. METHODS: Patients age ≥ 16 years with r/r B-ALL were eligible. Primary outcomes were toxicity and manufacturing feasibility. Secondary outcomes were depth of response at 1 and 3 months, persistence of CAR-T, incidence and duration of hypogammaglobulinemia and B-cell aplasia, and event-free survival and overall survival at 1 and 2 years. RESULTS: Twenty-five patients were leukapheresed, 24 products were manufactured, and 20 patients were infused with AUTO1. The median age was 41.5 years; 25% had prior blinatumomab, 50% prior inotuzumab ozogamicin, and 65% prior allogeneic stem-cell transplantation. At the time of preconditioning, 45% had ≥ 50% bone marrow blasts. No patients experienced ≥ grade 3 cytokine release syndrome; 3 of 20 (15%) experienced grade 3 neurotoxicity that resolved to ≤ grade 1 within 72 hours with steroids. Seventeen of 20 (85%) achieved minimal residual disease-negative complete response at month 1, and 3 of 17 underwent allogeneic stem-cell transplantation while in remission. The event-free survival at 6 and 12 months was 68.3% (42.4%-84.4%) and 48.3% (23.1%-69.7%), respectively. High-level expansion (Cmax 127,152 copies/µg genomic DNA) and durable CAR-T persistence were observed with B-cell aplasia ongoing in 15 of 20 patients at last follow-up. CONCLUSION: AUTO1 demonstrates a tolerable safety profile, high remission rates, and excellent persistence in r/r adult B-ALL. Preliminary data support further development of AUTO1 as a stand-alone treatment for r/r adult B-ALL.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Adolescente , Adulto , Agammaglobulinemia/etiología , Linfocitos B/patología , Médula Ósea/patología , Síndrome de Liberación de Citoquinas/etiología , Femenino , Enfermedad Injerto contra Huésped/etiología , Humanos , Infecciones/etiología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Supervivencia sin Progresión , Recurrencia , Retratamiento , Tasa de Supervivencia , Trasplante Autólogo/efectos adversos , Resultado del Tratamiento , Adulto Joven
2.
Curr Opin Struct Biol ; 70: 108-122, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34225010

RESUMEN

Understanding the mechanisms of protein function is indispensable for many biological applications, such as protein engineering and drug design. However, experimental annotations are sparse, and therefore, theoretical strategies are needed to fill the gap. Here, we present the latest developments in building functional subclassifications of protein superfamilies and using evolutionary conservation to detect functional determinants, for example, catalytic-, binding- and specificity-determining residues important for delineating the functional families. We also briefly review other features exploited for functional site detection and new machine learning strategies for combining multiple features.


Asunto(s)
Evolución Biológica , Proteínas , Sitios de Unión , Catálisis , Biología Computacional , Humanos , Aprendizaje Automático , Ingeniería de Proteínas , Proteínas/genética
3.
Nucleic Acids Res ; 49(D1): D266-D273, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33237325

RESUMEN

CATH (https://www.cathdb.info) identifies domains in protein structures from wwPDB and classifies these into evolutionary superfamilies, thereby providing structural and functional annotations. There are two levels: CATH-B, a daily snapshot of the latest domain structures and superfamily assignments, and CATH+, with additional derived data, such as predicted sequence domains, and functionally coherent sequence subsets (Functional Families or FunFams). The latest CATH+ release, version 4.3, significantly increases coverage of structural and sequence data, with an addition of 65,351 fully-classified domains structures (+15%), providing 500 238 structural domains, and 151 million predicted sequence domains (+59%) assigned to 5481 superfamilies. The FunFam generation pipeline has been re-engineered to cope with the increased influx of data. Three times more sequences are captured in FunFams, with a concomitant increase in functional purity, information content and structural coverage. FunFam expansion increases the structural annotations provided for experimental GO terms (+59%). We also present CATH-FunVar web-pages displaying variations in protein sequences and their proximity to known or predicted functional sites. We present two case studies (1) putative cancer drivers and (2) SARS-CoV-2 proteins. Finally, we have improved links to and from CATH including SCOP, InterPro, Aquaria and 2DProt.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Bases de Datos de Proteínas/estadística & datos numéricos , Dominios Proteicos , Proteínas/química , Secuencia de Aminoácidos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Biología Computacional/métodos , Epidemias , Humanos , Internet , Anotación de Secuencia Molecular , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Análisis de Secuencia de Proteína/métodos , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Int J Stem Cells ; 11(2): 235-241, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30497130

RESUMEN

Mbd3 (Methyl-CpG binding domain protein), a core member of NuRD (nucleosome remodelling and deacetylation) is essential for embryogenesis. However, its role in reprogramming of somatic cells into induced pluripotent stem cells (iPSC) remains controversial. Some reports suggest that Mbd3 inhibits pluripotency, whilst others show that it greatly enhances reprogramming efficiency. Our study is the first to assess the role of Mbd3 on reprogramming of primary human fibroblasts using Yamanaka episomal plasmids (Reprogramming factors (RF) under feeder-free conditions. We showed that shRNA-mediated partial depletion of Mbd3 resulted in >5-fold reduction in the efficiency of reprogramming of primary human fibroblasts. Furthermore, iPSC that emerged after knock-down of Mbd3 were incapable of trilineage differentiation even though they expressed all markers of pluripotency. In contrast, over-expression of the Mbd3b isoform along with the Yamanaka episomal plasmids increased the number of fibroblast derived iPSC colonies by at least two-fold. The resulting colonies were capable of trilineage differentiation. Our results, therefore, suggest that Mbd3 appears to play an important role in reprogramming of primary human fibroblasts, which provides further insight into the biology of reprogramming but also has direct implication for translation of iPSC to clinic.

5.
Blood ; 132(20): 2154-2165, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30181174

RESUMEN

Improving outcomes in multiple myeloma will involve not only development of new therapies but also better use of existing treatments. We performed RNA sequencing on samples from newly diagnosed patients enrolled in the phase 2 PADIMAC (Bortezomib, Adriamycin, and Dexamethasone Therapy for Previously Untreated Patients with Multiple Myeloma: Impact of Minimal Residual Disease in Patients with Deferred ASCT) study. Using synthetic annealing and the large margin nearest neighbor algorithm, we developed and trained a 7-gene signature to predict treatment outcome. We tested the signature in independent cohorts treated with bortezomib- and lenalidomide-based therapies. The signature was capable of distinguishing which patients would respond better to which regimen. In the CoMMpass data set, patients who were treated correctly according to the signature had a better progression-free survival (median, 20.1 months vs not reached; hazard ratio [HR], 0.40; confidence interval [CI], 0.23-0.72; P = .0012) and overall survival (median, 30.7 months vs not reached; HR, 0.41; CI, 0.21-0.80; P = .0049) than those who were not. Indeed, the outcome for these correctly treated patients was noninferior to that for those treated with combined bortezomib, lenalidomide, and dexamethasone, arguably the standard of care in the United States but not widely available elsewhere. The small size of the signature will facilitate clinical translation, thus enabling more targeted drug regimens to be delivered in myeloma.


Asunto(s)
Antineoplásicos/uso terapéutico , Bortezomib/uso terapéutico , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Dexametasona/uso terapéutico , Doxorrubicina/uso terapéutico , Humanos , Estimación de Kaplan-Meier , Aprendizaje Automático , Mutación , Modelos de Riesgos Proporcionales , Análisis de Secuencia de ARN , Transcriptoma , Resultado del Tratamiento , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...