Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
medRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38903065

RESUMEN

Electroconvulsive therapy (ECT) remains a critical intervention for treatment-resistant depression (MDD), yet its neurobiological underpinnings are not fully understood. This pilot study utilizes high-resolution magnetoencephalography (MEG) in nine depressed patients receiving right unilateral ECT, to investigate the changes in loudness dependence of auditory evoked potentials (LDAEP), a proposed biomarker of serotonergic activity, following ECT. We hypothesized that ECT would reduce the LDAEP slope, reflecting enhanced serotonergic neurotransmission. Contrary to this, our findings indicated a significant increase in LDAEP post-ECT ( t 8 = 3.17, p = .013). The increase in LDAEP was not associated with changes in depression severity or cognitive performance, as assessed by the Hamilton Depression Rating Scale (HAMD-24) and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). We discussed potential mechanisms for the observed increase, including ECT's impact on serotonergic, dopaminergic, glutamatergic, and GABAergic receptor activity, neuroplasticity involving brain-derived neurotrophic factor (BDNF), and inflammation modulators such as TNF- alpha . Our results suggest a complex interaction between ECT and these neurobiological systems, rather than a direct reflection of serotonergic neurotransmission.

3.
Neuropsychopharmacology ; 49(4): 640-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212442

RESUMEN

Electroconvulsive therapy (ECT) pulse amplitude, which dictates the induced electric field (E-field) magnitude in the brain, is presently fixed at 800 or 900 milliamperes (mA) without clinical or scientific rationale. We have previously demonstrated that increased E-field strength improves ECT's antidepressant effect but worsens cognitive outcomes. Amplitude-determined seizure titration may reduce the E-field variability relative to fixed amplitude ECT. In this investigation, we assessed the relationships among amplitude-determined seizure-threshold (STa), E-field magnitude, and clinical outcomes in older adults (age range 50 to 80 years) with depression. Subjects received brain imaging, depression assessment, and neuropsychological assessment pre-, mid-, and post-ECT. STa was determined during the first treatment with a Soterix Medical 4×1 High Definition ECT Multi-channel Stimulation Interface (Investigation Device Exemption: G200123). Subsequent treatments were completed with right unilateral electrode placement (RUL) and 800 mA. We calculated Ebrain defined as the 90th percentile of E-field magnitude in the whole brain for RUL electrode placement. Twenty-nine subjects were included in the final analyses. Ebrain per unit electrode current, Ebrain/I, was associated with STa. STa was associated with antidepressant outcomes at the mid-ECT assessment and bitemporal electrode placement switch. Ebrain/I was associated with changes in category fluency with a large effect size. The relationship between STa and Ebrain/I extends work from preclinical models and provides a validation step for ECT E-field modeling. ECT with individualized amplitude based on E-field modeling or STa has the potential to enhance neuroscience-based ECT parameter selection and improve clinical outcomes.


Asunto(s)
Terapia Electroconvulsiva , Humanos , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Terapia Electroconvulsiva/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Convulsiones/terapia , Antidepresivos/uso terapéutico , Cognición , Resultado del Tratamiento
4.
Psychol Med ; 54(3): 495-506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37485692

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. METHODS: Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. RESULTS: Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82-0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70-0.73 AUC). CONCLUSIONS: These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Terapia Electroconvulsiva/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/patología , Depresión , Neuroimagen , Imagen por Resonancia Magnética/métodos , Biomarcadores , Aprendizaje Automático , Resultado del Tratamiento
5.
Brain Stimul ; 17(1): 140-147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38101469

RESUMEN

OBJECTIVE: Electroconvulsive therapy (ECT) is effective for major depressive episodes. Understanding of underlying mechanisms has been increased by examining changes of brain connectivity but studies often do not correct for test-retest variability in healthy controls (HC). In this study, we investigated changes in resting-state networks after ECT in a multicenter study. METHODS: Functional resting-state magnetic resonance imaging data, acquired before start and within one week after ECT, from 90 depressed patients were analyzed, as well as longitudinal data of 24 HC. Group-information guided independent component analysis (GIG-ICA) was used to spatially restrict decomposition to twelve canonical resting-state networks. Selected networks of interest were the default mode network (DMN), salience network (SN), and left and right frontoparietal network (LFPN, and RFPN). Whole-brain voxel-wise analyses were used to assess group differences at baseline, group by time interactions, and correlations with treatment effectiveness. In addition, between-network connectivity and within-network strengths were computed. RESULTS: Within-network strength of the DMN was lower at baseline in ECT patients which increased after ECT compared to HC, after which no differences were detected. At baseline, ECT patients showed lower whole-brain voxel-wise DMN connectivity in the precuneus. Increase of within-network strength of the LFPN was correlated with treatment effectiveness. We did not find whole-brain voxel-wise or between-network changes. CONCLUSION: DMN within-network connectivity normalized after ECT. Within-network increase of the LFPN in ECT patients was correlated with higher treatment effectiveness. In contrast to earlier studies, we found no whole-brain voxel-wise changes, which highlights the necessity to account for test-retest effects.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Terapia Electroconvulsiva/métodos , Trastorno Depresivo Mayor/terapia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Lóbulo Parietal , Imagen por Resonancia Magnética/métodos
7.
Mol Psychiatry ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985787

RESUMEN

Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response. We set out to investigate if the neuronal underpinnings of electroconvulsive therapy (ECT) are similarly associated with this causal depression network (CDN). Our aim here is to provide a comprehensive analysis in three cohorts of patients segregated by electrode placement (N = 246 with right unilateral, 79 with bitemporal, and 61 with mixed) who underwent ECT. We conducted a data-driven, unsupervised multivariate neuroimaging analysis Principal Component Analysis (PCA) of the cortical and subcortical volume changes and electric field (EF) distribution to explore changes within the CDN associated with antidepressant outcomes. Despite the different treatment modalities (ECT vs TMS and DBS) and methodological approaches (structural vs functional networks), we found a highly similar pattern of change within the CDN in the three cohorts of patients (spatial similarity across 85 regions: r = 0.65, 0.58, 0.40, df = 83). Most importantly, the expression of this pattern correlated with clinical outcomes (t = -2.35, p = 0.019). This evidence further supports that treatment interventions converge on a CDN in depression. Optimizing modulation of this network could serve to improve the outcome of neurostimulation in depression.

8.
Front Psychiatry ; 14: 1215093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593449

RESUMEN

Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention for late-life depression (LLD) but may have lower rates of response and remission owing to age-related brain changes. In particular, rTMS induced electric field strength may be attenuated by cortical atrophy in the prefrontal cortex. To identify clinical characteristics and treatment parameters associated with response, we undertook a pilot study of accelerated fMRI-guided intermittent theta burst stimulation (iTBS) to the right dorsolateral prefrontal cortex in 25 adults aged 50 or greater diagnosed with LLD and qualifying to receive clinical rTMS. Methods: Participants underwent baseline behavioral assessment, cognitive testing, and structural and functional MRI to generate individualized targets and perform electric field modeling. Forty-five sessions of iTBS were delivered over 9 days (1800 pulses per session, 50-min inter-session interval). Assessments and testing were repeated after 15 sessions (Visit 2) and 45 sessions (Visit 3). Primary outcome measure was the change in depressive symptoms on the Inventory of Depressive Symptomatology-30-Clinician (IDS-C-30) from Visit 1 to Visit 3. Results: Overall there was a significant improvement in IDS score with the treatment (Visit 1: 38.6; Visit 2: 31.0; Visit 3: 21.3; mean improvement 45.5%) with 13/25 (52%) achieving response and 5/25 (20%) achieving remission (IDS-C-30 < 12). Electric field strength and antidepressant effect were positively correlated in a subregion of the ventrolateral prefrontal cortex (VLPFC) (Brodmann area 47) and negatively correlated in the posterior dorsolateral prefrontal cortex (DLPFC). Conclusion: Response and remission rates were lower than in recently published trials of accelerated fMRI-guided iTBS to the left DLPFC. These results suggest that sufficient electric field strength in VLPFC may be a contributor to effective rTMS, and that modeling to optimize electric field strength in this area may improve response and remission rates. Further studies are needed to clarify the relationship of induced electric field strength with antidepressant effects of rTMS for LLD.

9.
Res Sq ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398308

RESUMEN

Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response. We set out to investigate if the neuronal underpinnings of electroconvulsive therapy (ECT) are similarly associated with this common causal network (CCN). Our aim here is to provide a comprehensive analysis in three cohorts of patients segregated by electrode placement (N = 246 with right unilateral, 79 with bitemporal, and 61 with mixed) who underwent ECT. We conducted a data-driven, unsupervised multivariate neuroimaging analysis (Principal Component Analysis, PCA) of the cortical and subcortical volume changes and electric field (EF) distribution to explore changes within the CCN associated with antidepressant outcomes. Despite the different treatment modalities (ECT vs TMS and DBS) and methodological approaches (structural vs functional networks), we found a highly similar pattern of change within the CCN in the three cohorts of patients (spatial similarity across 85 regions: r = 0.65, 0.58, 0.40, df = 83). Most importantly, the expression of this pattern correlated with clinical outcomes. This evidence further supports that treatment interventions converge on a CCN in depression. Optimizing modulation of this network could serve to improve the outcome of neurostimulation in depression.

10.
Brain Stimul ; 16(4): 1128-1134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37517467

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depressive disorders. A recent multi-center study found no consistent changes in correlation-based (undirected) resting-state connectivity after ECT. Effective (directed) connectivity may provide more insight into the working mechanism of ECT. OBJECTIVE: We investigated whether there are consistent changes in effective resting-state connectivity. METHODS: This multi-center study included data from 189 patients suffering from severe unipolar depression and 59 healthy control participants. Longitudinal data were available for 81 patients and 24 healthy controls. We used dynamic causal modeling for resting-state functional magnetic resonance imaging to determine effective connectivity in the default mode, salience and central executive networks before and after a course of ECT. Bayesian general linear models were used to examine differences in baseline and longitudinal effective connectivity effects associated with ECT and its effectiveness. RESULTS: Compared to controls, depressed patients showed many differences in effective connectivity at baseline, which varied according to the presence of psychotic features and later treatment outcome. Additionally, effective connectivity changed after ECT, which was related to ECT effectiveness. Notably, treatment effectiveness was associated with decreasing and increasing effective connectivity from the posterior default mode network to the left and right insula, respectively. No effects were found using correlation-based (undirected) connectivity. CONCLUSIONS: A beneficial response to ECT may depend on how brain regions influence each other in networks important for emotion and cognition. These findings further elucidate the working mechanisms of ECT and may provide directions for future non-invasive brain stimulation research.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Terapia Electroconvulsiva/métodos , Teorema de Bayes , Trastorno Depresivo Mayor/terapia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos
11.
Artículo en Inglés | MEDLINE | ID: mdl-37331685

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS: ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS: Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Terapia Electroconvulsiva/métodos , Encéfalo , Trastorno Depresivo Mayor/tratamiento farmacológico , Imagen por Resonancia Magnética , Antidepresivos/uso terapéutico
12.
Front Psychiatry ; 14: 1168672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275969

RESUMEN

Background: The field of view (FOV) considered in MRI-guided forward models of electroconvulsive therapy (ECT) are, as expected, limited to the MRI volume collected. Therefore, there is variation in model extent considered across simulation efforts. This study examines the impact of FOV on the induced electric field (E-field) due to two common electrode placements: right unilateral (RUL) and bilateral (BL). Methods: A full-body dataset was obtained and processed for modeling relevant to ECT physics. Multiple extents were derived by truncating from the head down to four levels: upper head (whole-brain), full head, neck, and torso. All relevant stimulation and focality metrics were determined. The differences in the 99th percentile peak of stimulation strength in the brain between each extent to the full-body (reference) model were considered as the relative error (RE). We also determine the FOV beyond which the difference to a full-body model would be negligible. Results: The 2D and 3D spatial plots revealed anticipated results in line with prior efforts. The RE for BL upper head was ~50% reducing to ~2% for the neck FOV. The RE for RUL upper head was ~5% reducing to subpercentage (0.28%) for the full-head FOV. As shown previously, BL was found to stimulate a larger brain volume-but restricted to the upper head and for amplitude up to ~480 mA. To some extent, RUL stimulated a larger volume. The RUL-induced volume was larger even when considering the neural activation threshold corresponding to brief pulse BL if ECT amplitude was >270 mA. This finding is explained by the BL-induced current loss through the inferior regions as more FOV is considered. Our result is a departure from prior efforts and raises questions about the focality metric as defined and/or inter-individual differences. Conclusion: Our findings highlight that BL is impacted more than RUL with respect to FOV. It is imperative to collect full-head data at a minimum for any BL simulation and possibly more. Clinical practice resorts to using BL ECT when RUL is unsuccessful. However, the notion that BL is more efficacious on the premise of stimulating more brain volume needs to be revisited.

14.
Artículo en Inglés | MEDLINE | ID: mdl-36925066

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is efficacious for treatment-resistant depression. Treatment-induced cognitive impairment can adversely impact functional outcomes. Our pilot study linked the electric field to ictal theta power from a single suprathreshold treatment and linked ictal theta power to changes in phonemic fluency. In this study, we set out to replicate our findings and expand upon the utility of ictal theta power as a potential cognitive biomarker. METHODS: Twenty-seven participants (18 female and 9 male) received right unilateral ECT for treatment-resistant depression. Pre-ECT magnetic resonance imaging and finite element modeling determined the 90th percentile maximum electric field in the brain. Two-lead electroencephalographs were digitally captured across the ECT course, with the earliest suprathreshold treatment used to determine power spectral density. Clinical and cognitive outcomes were assessed pre-, mid-, and post-ECT. We assessed the relationship between the electric field in the brain, ictal theta power, clinical outcome (Inventory of Depressive Symptomatology), and cognitive outcomes (phonemic and semantic fluency) with linear models. RESULTS: Ictal theta power in the Fp1 and Fp2 channels was associated with the electric field, antidepressant outcome, and phonemic and semantic fluency. The relationship between ictal theta power and phonemic fluency was strengthened in the longitudinal analysis. The electric field in the brain was directly associated with phonemic and semantic fluency but not with antidepressant outcome. CONCLUSIONS: Ictal theta power is a potential cognitive biomarker early on in the ECT course to help guide parameter changes. Larger studies are needed to further assess ictal theta power's role in predicting mood outcome and changes with ECT parameters.


Asunto(s)
Terapia Electroconvulsiva , Humanos , Masculino , Femenino , Terapia Electroconvulsiva/métodos , Proyectos Piloto , Encéfalo , Electroencefalografía/métodos , Antidepresivos/uso terapéutico
15.
Transl Psychiatry ; 13(1): 43, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746924

RESUMEN

Electroconvulsive therapy (ECT) is the most effective treatment for severe depression and works by applying an electric current through the brain. The applied current generates an electric field (E-field) and seizure activity, changing the brain's functional organization. The E-field, which is determined by electrode placement (right unilateral or bitemporal) and pulse amplitude (600, 700, or 800 milliamperes), is associated with the ECT response. However, the neural mechanisms underlying the relationship between E-field, functional brain changes, and clinical outcomes of ECT are not well understood. Here, we investigated the relationships between whole-brain E-field (Ebrain, the 90th percentile of E-field magnitude in the brain), cerebro-cerebellar functional network connectivity (FNC), and clinical outcomes (cognitive performance and depression severity). A fully automated independent component analysis framework determined the FNC between the cerebro-cerebellar networks. We found a linear relationship between Ebrain and cognitive outcomes. The mediation analysis showed that the cerebellum to middle occipital gyrus (MOG)/posterior cingulate cortex (PCC) FNC mediated the effects of Ebrain on cognitive performance. In addition, there is a mediation effect through the cerebellum to parietal lobule FNC between Ebrain and antidepressant outcomes. The pair-wise t-tests further demonstrated that a larger Ebrain was associated with increased FNC between cerebellum and MOG and decreased FNC between cerebellum and PCC, which were linked with decreased cognitive performance. This study implies that an optimal E-field balancing the antidepressant and cognitive outcomes should be considered in relation to cerebro-cerebellar functional neuroplasticity.


Asunto(s)
Trastorno Depresivo , Terapia Electroconvulsiva , Humanos , Encéfalo , Cerebelo , Antidepresivos , Imagen por Resonancia Magnética
16.
Front Pharmacol ; 14: 1102413, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755955

RESUMEN

Introduction: Electroconvulsive therapy (ECT) remains one of the most effective approaches for treatment-resistant depressive episodes, despite the potential cognitive impairment associated with this treatment. As a potent stimulator of neuroplasticity, ECT might normalize aberrant depression-related brain function via the brain's reconstruction by forming new neural connections. Multiple lines of evidence have demonstrated that functional connectivity (FC) changes are reliable indicators of antidepressant efficacy and cognitive changes from static and dynamic perspectives. However, no previous studies have directly ascertained whether and how different aspects of FC provide complementary information in terms of neuroimaging-based prediction of clinical outcomes. Methods: In this study, we implemented a fully automated independent component analysis framework to an ECT dataset with subjects (n = 50, age = 65.54 ± 8.92) randomized to three treatment amplitudes (600, 700, or 800 milliamperes [mA]). We extracted the static functional network connectivity (sFNC) and dynamic FNC (dFNC) features and employed a partial least square regression to build predictive models for antidepressant outcomes and cognitive changes. Results: We found that both antidepressant outcomes and memory changes can be robustly predicted by the changes in sFNC (permutation test p < 5.0 × 10-3). More interestingly, by adding dFNC information, the model achieved higher accuracy for predicting changes in the Hamilton Depression Rating Scale 24-item (HDRS24, t = 9.6434, p = 1.5 × 10-21). The predictive maps of clinical outcomes show a weakly negative correlation, indicating that the ECT-induced antidepressant outcomes and cognitive changes might be associated with different functional brain neuroplasticity. Discussion: The overall results reveal that dynamic FC is not redundant but reflects mechanisms of ECT that cannot be captured by its static counterpart, especially for the prediction of antidepressant efficacy. Tracking the predictive signatures of static and dynamic FC will help maximize antidepressant outcomes and cognitive safety with individualized ECT dosing.

17.
BMC Med ; 20(1): 477, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482369

RESUMEN

BACKGROUND: Although electroconvulsive therapy (ECT) is an effective treatment for depression, ECT cognitive impairment remains a major concern. The neurobiological underpinnings and mechanisms underlying ECT antidepressant and cognitive impairment effects remain unknown. This investigation aims to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks and assesses whether they are associated with the ECT-induced electric field (E-field) with an optimal pulse amplitude estimation. METHODS: A single site clinical trial focused on amplitude (600, 700, and 800 mA) included longitudinal multimodal imaging and clinical and cognitive assessments completed before and immediately after the ECT series (n = 54) for late-life depression. Another two independent validation cohorts (n = 84, n = 260) were included. Symptom and cognition were used as references to supervise fMRI and sMRI fusion to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks. Correlations between ECT-induced E-field within these two networks and clinical and cognitive outcomes were calculated. An optimal pulse amplitude was estimated based on E-field within antidepressant-response and cognitive-impairment networks. RESULTS: Decreased function in the superior orbitofrontal cortex and caudate accompanied with increased volume in medial temporal cortex showed covarying functional and structural alterations in both antidepressant-response and cognitive-impairment networks. Volume increases in the hippocampal complex and thalamus were antidepressant-response specific, and functional decreases in the amygdala and hippocampal complex were cognitive-impairment specific, which were validated in two independent datasets. The E-field within these two networks showed an inverse relationship with HDRS reduction and cognitive impairment. The optimal E-filed range as [92.7-113.9] V/m was estimated to maximize antidepressant outcomes without compromising cognitive safety. CONCLUSIONS: The large degree of overlap between antidepressant-response and cognitive-impairment networks challenges parameter development focused on precise E-field dosing with new electrode placements. The determination of the optimal individualized ECT amplitude within the antidepressant and cognitive networks may improve the treatment benefit-risk ratio. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02999269.


Asunto(s)
Disfunción Cognitiva , Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Neurobiología , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/terapia
19.
J ECT ; 38(2): 88-94, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35613008

RESUMEN

OBJECTIVE: Electroconvulsive therapy (ECT) remains the benchmark for treatment resistant depression, yet its cognitive adverse effects have a negative impact on treatment. A predictive safety biomarker early in ECT treatment is needed to identify patients at cognitive risk to maximize therapeutic outcomes and minimize adverse effects. We used ictal electroencephalography frequency analysis from suprathreshold treatments to assess the relationships between ECT dose, ictal power across different frequency domains, and cognitive outcomes. METHODS: Seventeen subjects with treatment resistant depression received right unilateral ECT. Structural magnetic resonance imaging was obtained pre-ECT for electric field modeling to assess ECT dose. Serial assessments with 24-lead electroencephalography captured ictal activity. Clinical and cognitive assessments were performed before and after ECT. The primary cognitive outcome was the change in Delis Kaplan Executive Function Verbal Fluency Letter Fluency. RESULTS: Ictal theta (4-8 Hz) power in the Fp1/Fp2 channels was associated with both whole-brain electric field strength (t(2,12) = 19.5, P = 0.007)/(t(2,10) = 21.85, P = 0.02) and Delis Kaplan Executive Function Verbal Fluency Letter Fluency scores (t(2,12) = -2.05, P = 0.05)/(t(2,10) = -2.20, P = 0.01). Other frequency bands (beta, alpha, delta, and gamma) did not demonstrate this relationship. CONCLUSIONS: This pilot data identify ictal theta power as a potential safety biomarker in ECT and is related to the strength of the ECT dose. Ictal theta power could prove to be a convenient and powerful tool for clinicians to identify those patients most susceptible to cognitive impairment early in the treatment series. Additional studies are needed to assess the role of longitudinal changes in ictal theta power throughout the ECT series.


Asunto(s)
Terapia Electroconvulsiva , Biomarcadores , Encéfalo , Terapia Electroconvulsiva/efectos adversos , Terapia Electroconvulsiva/métodos , Electroencefalografía/métodos , Humanos , Proyectos Piloto , Resultado del Tratamiento
20.
J Am Acad Child Adolesc Psychiatry ; 61(5): 583-585, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181465

RESUMEN

Catatonia is a complex constellation of symptoms presenting with abnormalities in movement and behavior and arises from multiple medical, neurologic, and psychiatric conditions. In recent years, there has been a call to move catatonia from a classifier to a diagnosis of its own in the DSM-5.1,2 Catatonia is often underdiagnosed in the hospital and carries with it substantial morbidity and mortality.3 Malignant catatonia, characterized by autonomic instability, hyperactivity, mutism, and stuporous exhaustion, is a medical emergency requiring intensive care.4 Early diagnosis and treatment are imperative, as untreated malignant catatonia may be fatal in up to 10% to 20% of cases, sometimes only days from onset.5 The combination of lorazepam and electroconvulsive therapy (ECT) is a safe and effective treatment for catatonia in both adults and children, although the body of literature pertaining to children remains limited.6,7 In addition, there are multiple case reports of improvement in catatonia with ECT regardless of etiology.8 However, laws in some US states prohibit ECT's use despite evidence of its effectiveness and safety in children and adolescents.9 Here, we describe a case presentation that was both prolonged and complicated by state laws pertaining to the use of ECT in children and adolescents.


Asunto(s)
Catatonia , Terapia Electroconvulsiva , Adolescente , Adulto , Catatonia/diagnóstico , Catatonia/terapia , Niño , Familia , Humanos , Agitación Psicomotora , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA