Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Genet Eng Biotechnol ; 21(1): 52, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126122

RESUMEN

BACKGROUND: Zinc oxide nanoparticles (ZnO NPs) can be considered as nanofertilizer providing zinc as an essential micronutrient for plant growth and production at specific safe dose, however, above this dose; ZnO NPs induce oxidative stress. The present research aimed to evaluate some physiological and molecular effects of ZnO NPs on Trigonella foenum-graecum (fenugreek) plant. RESULTS: The ZnO NPs were applied at five different concentrations (10, 20, 30, 40, and 50 mg/l) via soaking fenugreek seeds for 24 h. Fenugreek seedlings were harvested after 14 days for biomass and biochemical analyses. The results revealed that increasing ZnO NPs concentration led to a significant increase in all measured parameters until peaked at 30 mg/l; after that, a decline trend was detected. However, malondialdehyde (MDA) increased significantly just at higher concentrations of ZnO NPs (40 and 50 mg/l). In addition, genetic variation measure using start codon targeted (SCoT) markers revealed that ZnO NP treatments exhibited limited genetic variation. CONCLUSION: Results showed that treatment with ZnO NPs at 30 mg/l can improve biomass, bioactive compounds, and antioxidant activity of fenugreek seedlings, besides being safe for DNA. So, this concentration could be a decent nanofertilizer for fenugreek plant.

2.
J Genet Eng Biotechnol ; 20(1): 166, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36520239

RESUMEN

BACKGROUND: A useful technique for growing large amounts of plant material is in vitro propagation of important medicinal plants. The present investigation deals with the enhancement of secondary metabolite production via elicitation using gamma (γ)-radiation and phenylalanine (Phe) precursor feeding in callus cultures of Silybum marianum L. RESULTS: Seeds were exposed to two doses of γ-radiation (25 and 50 Gy) and the calli derived from stem explants  obtained from seedlings of these radiated seeds were treated with different concentrations of Phe. The biosynthesis of phenols and flavonoids was evaluated. It was found that callus cultures derived from explants of the seeds exposed to 25 Gy γ-radiation and treated with 4 mg/l Phe accumulated the maximum phenolic content (34.27±0.02 mg/g d.wt.), while the highest flavonoid content (9.56±0.12 mg/g d.wt.) was found in callus cultures derived from explants of seeds radiated with 25 Gy γ-radiation and subjected to 1 mg/l Phe. Similarly, HPLC quantification revealed that the production of flavonoids was highly accumulated (1343.06 µg/mg d.wt.) in callus cultures from explants of seeds  exposed to 25 Gy γ-radiation and grown at 1 mg/l Phe compared to the other treatments. In addition, a total of 11 important flavonoids have been determined in all callus cultures, except for acacetin-7-O-rutinoside, which was not found in the callus culture of the control. CONCLUSIONS: These findings suggest that γ-radiation combined with Phe can improve the metabolism of S. marianum L. and could be used to produce such valuable metabolites on a commercial scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA