Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713015

RESUMEN

Heavy metals are particularly damaging contaminants in the environment, and even trace concentrations represent a risk to human health due to their toxicity. To detect the heavy metals of Mn2+ and Co2+ ions, a novel selective reusable paper-based Fluorescence naked-eye sensor based on naphthalene cationic Schiff base (NCSB) was synthesized and confirmed using FT-IR, 1 H-NMR, and MS tools. Based on a blue to colorless color change in the aqueous solution, the NCSB sensor is utilized to Mn2+ and Co2+ cations selectively among other metal ions (Fe2+, Cu2+, Mg2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+, Sn2+ and Cr3+). In the aqueous medium, the NCSB sensor displayed high sensitivity, with limits of detection (LOD) values of 0.014 µM (14.08 nM) and 0.041 µM (41.47 nM) for Mn2+ and Co2+ cations, respectively. The paper-based sensor naked-eye detected Mn2+ and Co2+ cations in water at concentrations as low as 0.65 µM (65 nM) and 0.086 µM (86 nM), respectively. It was discovered that 5 min of incubation time and a pH range of 7 to 11 were optimal for the complexation reaction between the Mn2+ and Co2+ ions and the NCSB sensor. Through a static quenching process, the interaction of the different metal ions with the Schiff base group in the NCSB molecule results in the development of a ground-state non-fluorescent complex. NCSB sensor was also successfully applied in analysis of Mn2+ and Co2+ in environmental water with good recoveries of 94.8-105.9%. The theoretical calculations based on density functional theory (DFT) studies are in support of experimental interpretations. The links between the input factors and the anticipated response were evaluated using the quadratic model of the response surface methodology (RSM) modeling.

2.
Analyst ; 146(9): 2894-2901, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33720268

RESUMEN

The design of multifunctional sensors based on biocompatible hybrid materials consisting of conjugated polythiophene-quantum dots for multiple environmental pollutants is a promising strategy for the development of new monitoring technologies. Herein, we present a new approach for the "on-off-on" sensing of Hg2+ and triacetone triperoxide (TATP) based on amphiphilic polythiophene-coated CdTe QDs (PQDs, PLQY ∼78%). The emission of the PQDs is quenched by Hg2+ ions via electron transfer interactions. Based on the strong interaction between TATP and Hg2+ ions, the addition of TATP to the PQD-Hg2+ complex results in a remarkable recovery of the PQD emission. Under the optimized conditions, the PQD sensor shows a good linear response to Hg2+ and TATP with detection limits of 7.4 nM and 0.055 mg L-1, respectively. Furthermore, the "on-off-on" sensor demonstrates good biocompatibility, high stability, and excellent selectivity in the presence of other metal ions and common explosives. Importantly, the proposed method can be used to determine the level of Hg2+ and TATP in environmental water samples.

3.
Int J Biol Macromol ; 152: 681-702, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32084486

RESUMEN

Chitosan is the second abundant biopolymer present on earth after cellulose. Chitosan is extracted from the shells of shrimp and other crustaceans. Several methods were reported for its extraction, but the most commercial is the deacetylation of chitin. Chitosan as a biopolymer has numerous applications and uses. But, its mechanical, chemical and biological characteristics can be enhanced by modification of its chemical structures. Several modification methods and derivatives were reviewed in the literatures, and several were collected in this review. The reviewed modified chitosan derivatives herein were five types of derivatives. The first is substituted chitosan derivatives including thiolated, phosphorylated, and N-phthaloylated derivatives. The second is crosslinked chitosan derivatives including chitosan-glutaraldehyde, chitosan-ethylene diamine tetraacetic acid, and chitosan-epichlorohydrin derivatives. The third is carboxylic acid derivatives of chitosan obtained from carboxyalkylation, acrylation, methacrylation, and benzoylation of chitosan. The fourth is ionic chitosan derivatives including highly cationic and sulfated derivatives. The last is bounded chitosan to specific molecules including cyclodextrin, thiosemicarbazone, dioxime, and crown ether precursors. The review also highlights the reported advantages and applications of the modified chitosan and the synthetic routes of the biopolymer modification.


Asunto(s)
Biopolímeros/química , Quitosano/química , Animales , Celulosa/química , Quitina/química , Crustáceos/química
4.
Mater Sci Eng C Mater Biol Appl ; 76: 871-885, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482602

RESUMEN

Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, 1HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C. The effect of silver particles on the surface behavior of the synthesized surfactant has been discussed. The aggregation behavior of silver nanoparticles with these synthesized Gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Furthermore, the antimicrobial activities of these synthesized amide Gemini surfactants and their nanostructure with silver against both Gram positive and Gram negative bacteria were also investigated.


Asunto(s)
Nanopartículas del Metal , Amidas , Antiinfecciosos , Plata , Tensoactivos , Termodinámica
5.
J Photochem Photobiol B ; 162: 421-433, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27450296

RESUMEN

Fluorescein (resorcinolphthalein) is a synthetic organic photoactive dye compound soluble in water, alcohol and polar solvents. It is widely used as a fluorescent tracer in medicinal and biological applications and tumor infected tissues tracer. In this study, fluorescein (F) was condensed by five coupling agents namely: p,p-phenylene diamine, p-hydroxy aniline, o-hydroxy aniline, p-methoxy aniline and p-methyl aniline in a molar ratio of 2(F):1 (coupling agent). The chemical structures of the synthesized fluorescein derivatives were confirmed using: microelemental analysis, FTIR spectroscopy, 1H-NMR spectroscopy, and mass spectroscopy. The synthesized compounds were loaded on chemically prepared silver nanoparticles via reduction reaction of silver nitrate. The structures and properties of the formed fluorescein derivatives silver nanohybrids were determined using: UV/Vis spectroscopy, TEM images and dynamic light scattering (DLS). The synthesized compounds and their nanohybrids were evaluated for their antimicrobial activities against different bacterial strains and fungi. The results showed that the formed fluorescein derivatives silver nanohybrids are in moderate diameter range, and the loading of the synthesized compounds protect the silver nanoparticles against coagulation. The antimicrobial activity against the studied microorganisms was comparable to the standard used. Moreover, the antimicrobial activity was increased considerably in case of using fluorescein derivatives silver nanohybrids. The antimicrobial activities were correlated to the chemical structures of the compounds, diameter of the formed nanohybrids and to the nature of the tested bacterial strains. The mechanism of the antimicrobial action of the synthesized compounds and their nanohybrids was proposed.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Fluoresceína/síntesis química , Fluoresceína/farmacología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Nanocompuestos/química , Antiinfecciosos/química , Técnicas de Química Sintética , Fluoresceína/química , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata/química
6.
Int J Biol Macromol ; 89: 507-17, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27151669

RESUMEN

In the present study, chitosan assembled on gold and silver nanoparticles were prepared and characterized by UV-vis, TEM, EDX and DLS techniques. The nanocomposites chitosan (Ch)/clay, chitosan (Ch)/AgNPs/clay and chitosan (Ch)/AuNPs/clay were prepared by solution mixing method and characterized by FTIR, XRD, and SEM techniques. The adsorption of copper(II) ions onto the prepared hybrid composites from an aqueous solution using batch adsorption was examined. The results showed that benefiting from the surface property of clay, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Cu(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Cu(II) is considerably dependent on pH of milieu, the amount of adsorbent, and contact time. Batch adsorption studies revealed that the adsorption capacity of Cu(II) increased with increase in initial concentration and contact time with optimum pH in the range around neutral. The maximum uptake of Cu(II) ions by (Ch)/AgNPs/clay composite was found to be 181.5mg/g. The adsorption efficiency of Cu(II) ions by prepared (Ch)/AgNPs/clay and (Ch)/AuNPs/clay is bigger than that the individual chitosan (Ch)/clay composite which clarifies the role of metal nanoparticles in enhancement the adsorption characters. The study suggests that the (Ch)/AgNPs/clay hybrid composite is a promising nano-adsorbent for the removal of Cu(II) ions from aqueous solution.


Asunto(s)
Quitosano/química , Cobre/química , Soluciones/química , Purificación del Agua , Adsorción , Silicatos de Aluminio/química , Arcilla , Oro/química , Nanopartículas del Metal/química , Nanocompuestos/química , Plata/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA