Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38541227

RESUMEN

Background and Objectives: Enterococcus faecalis (E. faecalis) is a primary pathogen responsible for dental abscesses, which cause inflammation and pain when trapped between the crown and soft tissues of an erupted tooth. Therefore, this study aims to use specific phages as an alternative method instead of classical treatments based on antibiotics to destroy multidrug-resistant E. faecalis bacteria for treating dental issues. Materials and Methods: In the current study, twenty-five bacterial isolates were obtained from infected dental specimens; only five had the ability to grow on bile esculin agar, and among these five, only two were described to be extensive multidrug-resistant isolates. Results: Two bacterial isolates, Enterococcus faecalis A.R.A.01 [ON797462.1] and Enterococcus faecalis A.R.A.02, were identified biochemically and through 16S rDNA, which were used as hosts for isolating specific phages. Two isolated phages were characterized through TEM imaging, which indicated that E. faecalis_phage-01 had a long and flexible tail, belonging to the family Siphoviridae, while E. faecalis_phage-02 had a contractile tail, belonging to the family Myoviridae. Genetically, two phages were identified through the PCR amplification and sequencing of the RNA ligase of Enterococcus phage vB_EfaS_HEf13, through which our phages shared 97.2% similarity with Enterococcus phage vB-EfaS-HEf13 based on BLAST analysis. Furthermore, through in silico analysis and annotations of the two phages' genomes, it was determined that a total of 69 open reading frames (ORFs) were found to be involved in various functions related to integration excision, replication recombination, repair, stability, and defense. In phage optimization, the two isolated phages exhibited a high specific host range with Enterococcus faecalis among six different bacterial hosts, where E. faecalis_phage-01 had a latent period of 30 min with 115.76 PFU/mL, while E. faecalis_phage-02 had a latent period of 25 min with 80.6 PFU/mL. They were also characterized with stability at wide ranges of pH (4-11) and temperature (10-60 °C), with a low cytotoxic effect on the oral epithelial cell line at different concentrations (1000-31.25 PFU/mL). Conclusions: The findings highlight the promise of phage therapy in dental medicine, offering a novel approach to combating antibiotic resistance and enhancing patient outcomes. Further research and clinical trials will be essential to fully understand the therapeutic potential and safety profile of these bacteriophages in human populations.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Enterococcus faecalis/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Absceso/terapia , Temperatura
2.
Medicina (Kaunas) ; 60(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541241

RESUMEN

Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 µg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.


Asunto(s)
Adhesinas Bacterianas , Antiinfecciosos , Nanopartículas del Metal , Polifenoles , Solanum lycopersicum , Humanos , Plata/farmacología , Antioxidantes/farmacología , Virulencia , Nanopartículas del Metal/uso terapéutico , Peróxido de Hidrógeno/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Staphylococcus aureus , Biopelículas , Antiinflamatorios/farmacología
3.
Am J Cancer Res ; 12(3): 986-1008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411239

RESUMEN

This study was initiated to explore the expression variation, clinical significance, and biological importance of the GINS complex subunit 4 (GINS4) in different human cancers as a shared biomarker via pan-cancer analysis through different platforms including UALCAN, Kaplan Meier (KM) plotter, TNMplot, GENT2, GEPIA, DriverDBv3, Human Protein Atlas (HPA), MEXPRESS, cBioportal, STRING, DAVID, MuTarge, Enrichr, TIMER, and CTD. Our findings have verified the up-regulation of GINS4 in 24 major subtypes of human cancers, and its overexpression was found to be substantially associated with poor overall survival (OS), relapse-free survival (RFs), and metastasis in ESCA, KIRC, LIHC, LUAD, and UCEC. This suggested that GINS4 plays a significant role in the development and progression of these five cancers. Furthermore, we noticed that GINS4 is also overexpressed in ESCA, KIRC, LIHC, LUAD, and UCEC patients with different clinicopathological characteristics. Enrichment analysis revealed the involvement of GINS4 associated genes in a variety of diverse GO and KEGG terms. We also explored few significant correlations between GINS4 expression and promoter methylation, genetic alterations, CNVs, other mutant genes, tumor purity, and immune cells infiltration. In conclusion, our results elucidated that GINS4 can serve as a shared diagnostic, prognostic biomarker, and a potential therapeutic target in ESCA, KIRC, LIHC, LUAD, and UCEC patients with different clinicopathological characteristics.

4.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335116

RESUMEN

Pelargonium graveolens, rose-scented geranium, is commonly used in the perfume industry. P. graveolens is enriched with essential oils, phenolics, flavonoids, which account for its tremendous biological activities. Laser light treatment and arbuscular mycorrhizal fungi (AMF) inoculation can further enhance the phytochemical content in a significant manner. In this study, we aimed to explore the synergistic impact of these two factors on P. graveolens. For this, we used four groups of surface-sterilized seeds: (1) control group1 (non-irradiated; non-colonized group); (2) control group2 (mycorrhizal colonized group); (3) helium-neon (He-Ne) laser-irradiated group; (4) mycorrhizal colonization coupled with He-Ne laser-irradiation group. Treated seeds were growing in artificial soil inculcated with Rhizophagus irregularis MUCL 41833, in a climate-controlled chamber. After 6 weeks, P. graveolens plants were checked for their phytochemical content and antibacterial potential. Laser light application improved the mycorrhizal colonization in P. graveolens plants which subsequently increased biomass accumulation, minerals uptake, and biological value of P. graveolens. The increase in the biological value was evident by the increase in the essential oils production. The concomitant application of laser light and mycorrhizal colonization also boosted the antimicrobial activity of P. graveolens. These results suggest that AMF co-treatment with laser light could be used as a promising approach to enhance the metabolic content and yield of P. graveolens for industrial and pharmaceutical use.


Asunto(s)
Antiinfecciosos , Micorrizas , Aceites Volátiles , Pelargonium , Antiinfecciosos/química , Antiinfecciosos/farmacología , Minerales , Micorrizas/metabolismo , Aceites Volátiles/química , Pelargonium/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...