Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Epidemiol Infect ; 149: e118, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33928895

RESUMEN

During the coronavirus disease 2019 (COVID-19) pandemic, many countries opted for strict public health measures, including closing schools. After some time, they have started relaxing some of those restrictions. To avoid overwhelming health systems, predictions for the number of new COVID-19 cases need to be considered when choosing a school reopening strategy. Using a computer simulation based on a stochastic compartmental model that includes a heterogeneous and dynamic network, we analyse different strategies to reopen schools in the São Paulo Metropolitan Area, including one similar to the official reopening plan. Our model allows us to describe different types of relations between people, each type with a different infectiousness. Based on our simulations and model assumptions, our results indicate that reopening schools with all students at once has a big impact on the number of new COVID-19 cases, which could cause a collapse of the health system. On the other hand, our results also show that a controlled school reopening could possibly avoid the collapse of the health system, depending on how people follow sanitary measures. We estimate that postponing the schools' return date for after a vaccine becomes available may save tens of thousands of lives just in the São Paulo Metropolitan Area compared to a controlled reopening considering a worst-case scenario. We also discuss our model constraints and the uncertainty of its parameters.


Asunto(s)
COVID-19/epidemiología , Instituciones Académicas/tendencias , Brasil/epidemiología , COVID-19/clasificación , COVID-19/mortalidad , COVID-19/transmisión , Ciudades/epidemiología , Simulación por Computador , Humanos , Procesos Estocásticos
2.
Tomography ; 6(2): 118-128, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548288

RESUMEN

Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. Ten sites (9 from the NCI's Quantitative Imaging Network] positron emission tomography-computed tomography working group plus one site from outside that group) participated in this project. Nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10 patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan. Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the features were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of variation (CV), expressed as a percentage, was calculated across software packages for each feature on each object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features showed excellent agreement with CV < 1%; 1 feature had moderate agreement (CV < 10%), and 3 features had larger variations (CV ≥ 10%) even after attempts at harmonization of feature calculations. This work highlights the value of feature definition standardization as well as the need to further clarify definitions for some features.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiometría , Programas Informáticos , Humanos , Neoplasias/diagnóstico por imagen , Radiometría/normas , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA