Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inflammopharmacology ; 32(3): 1903-1928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630361

RESUMEN

Penconazole (PEN) is a systemic triazole fungicide used to control various fungal diseases on grapes, stone fruits, cucurbits, and strawberries. Still, it leaves residues on treated crops after collection with many hazardous effects on population including neurotoxicity. Withania somnifera leaves extract (WSLE) is known for its memory and brain function enhancing ability. To evoke such action efficiently, WSLE bioactive metabolites are needed to cross the blood-brain barrier, that could limit the availability of such compounds to be localized within the brain. Therefore, in the present study, the association between PEN exposure and neurotoxicity was evaluated, and formulated WSLE nanoemulsion was investigated for improving the permeability of the plant extract across the blood-brain barrier. The rats were divided into five groups (n = 6). The control group was administered distilled water, group II was treated with W. somnifera leaves extract nanoemulsion (WSLE NE), group III received PEN, group IV received PEN and WSLE, and group V received PEN and WSLE NE. All rats were gavaged daily for 6 weeks. Characterization of compounds in WSLE using LC-MS/MS analysis was estimated. Neurobehavioral disorders were evaluated in all groups. Oxidative stress biomarkers, antioxidant enzyme activities, and inflammatory cytokines were measured in brain tissue. Furthermore, the gene expression patterns of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax were measured. Histopathological changes and immunohistochemical expression in the peripheral sciatic nerve and cerebral cortex were evaluated. A total of 91 compounds of different chemo-types were detected and identified in WSLE in both ionization modes. Our data showed behavioral impairment in the PEN-treated group, with significant elevation of oxidative stress biomarkers, proinflammatory cytokines, neuronal damage, and apoptosis. In contrast, the PEN-treated group with WSLE NE showed marked improvement in behavioral performance and histopathological alteration with a significant increase in antioxidant enzyme activity and anti-inflammatory cytokines compared to the group administered WSLE alone. The PEN-treated group with WSLE NE in turn significantly downregulated the expression levels of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax in brain tissue. In conclusion, WSLE NE markedly enhanced the permeability of plant extract constituents through the blood brain barrier to boost its neuroprotective effect against PEN-induced neurotoxicity.


Asunto(s)
Fármacos Neuroprotectores , Estrés Oxidativo , Extractos Vegetales , Hojas de la Planta , Transducción de Señal , Proteína Smad2 , Factor de Crecimiento Transformador beta1 , Withania , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Withania/química , Ratas , Hojas de la Planta/química , Fármacos Neuroprotectores/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína Smad2/metabolismo , Emulsiones , Síndromes de Neurotoxicidad/tratamiento farmacológico , Ratas Wistar , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Antioxidantes/farmacología
2.
Pestic Biochem Physiol ; 201: 105903, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685225

RESUMEN

Abamectin (AB) is widely used in agriculture and has been employed as an insecticide, nematicide, and livestock pest control agent. However, it may also pose a serious threat to mammals. The primary purpose of this research was to compare the sex variations between male and female rats during exposure and to assess the risk of toxicity of abamectin, which are still largely unknown. The twenty albino rats were divided randomly into four groups (n = 5): 1) the male control group; 2) the male treatment group treated with AB (1 mg/kg B.W.); 3) the female control group; and 4) the female treatment group treated with AB (1 mg/kg B.W.). AB administration caused a drop in body weight in females more than males with showing oxidative stress in both sexes of animals, as characterized by an increase in MDA content and a decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Reported sex-specific effects suggested that females are more susceptible from males in brain tissues for alteration of antioxidant markers while females' liver and kidney tissues showed more level of lipid peroxidation than males. In addition, mitochondrial dysfunction was associated with a significant decrease in NADH dehydrogenase (Complex I) and a significant decrease in mitochondrial ATPase, which led to apoptosis and histopathological alterations in the targeted tissues, indicating that females are higher sensitive than males to these biological events. In brief, the results of this study led to female rats are generally more sensitive than male rats to neurobehavioral and hepatic complications associated with abamectin treatment. Further evaluation should be performed to determine the adverse outcome pathways involved and to determine the effects of sex on improving the risk assessment of abamectin in both sexes.


Asunto(s)
Apoptosis , Ivermectina , Ivermectina/análogos & derivados , Mitocondrias , Estrés Oxidativo , Animales , Ivermectina/toxicidad , Femenino , Masculino , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Peroxidación de Lípido/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Malondialdehído/metabolismo , Insecticidas/toxicidad
3.
Inflammopharmacology ; 31(2): 943-965, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745244

RESUMEN

Thiacloprid (TH) is a neurotoxic agricultural insecticide and potential food contaminant. The purpose of this study was to investigate the relationship between TH exposure and memory dysfunction in rats, as well as the potential protective effect of piracetam and piracetam-loaded magnetic chitosan nanoparticles (PMC NPs). Rats were divided into five equal groups (six rats/group). The control group received saline. Group II was treated with PMC NPs at a dose level of 200 mg/kg body weight (Bwt); Group III was treated with 1/10 LD50 of TH (65 mg/kg Bwt); Group IV was treated with TH (65 mg/kg Bwt) and piracetam (200 mg/kg Bwt); Group V was co-treated with TH (65 mg/kg Bwt) and PMC NPs (200 mg/kg Bwt). All animal groups were dosed daily for 6 weeks by oral gavage. Footprint analysis, hanging wire test, open field test, and Y-maze test were employed to assess behavioral deficits. Animals were euthanized, and brain tissues were analyzed for oxidative stress biomarkers, proinflammatory cytokines, and gene expression levels of glial fibrillary acidic protein (GFAP), amyloid-beta precursor protein (APP), B-cell lymphoma 2 (Bcl-2), and caspase-3. Brain and sciatic nerve tissues were used for the evaluation of histopathological changes and immunohistochemical expression of tau protein and nuclear factor kappa B (NF-κB), respectively. The results revealed that TH-treated rats suffered from oxidative damage and inflammatory effect on the central and peripheral nerves. The administration of PMC NPs considerably protected against TH-induced neuronal damage, increased antioxidant enzyme activity, decreased inflammatory markers, and improved behavioral performance than the group treated with piracetam. The neuroprotective effect of PMC NPs was mediated through the inhibition of GFAP, APP, caspase-3, Tau, and NF-κB gene expression with induction of Bcl-2 expression. In conclusion, TH could induce oxidative stress, inflammatory and neurobehavior impairment in rats. However, PMC NPs administration markedly mitigated TH-induced brain toxicity, possibly via oxidative and inflammatory modulation rather than using piracetam alone.


Asunto(s)
Quitosano , Nanopartículas , Fármacos Neuroprotectores , Piracetam , Animales , Ratas , Caspasa 3/metabolismo , Quitosano/farmacología , Quitosano/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Fenómenos Magnéticos , Antioxidantes/farmacología , Antioxidantes/metabolismo
4.
Toxicology ; 480: 153313, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113622

RESUMEN

Scientific evidence has shown that fipronil induces oxidative stress and genotoxicity. Our study aimed to evaluate the potential oxidation in redox parameters and DNA, as well as determine the protective effect of date extract of increasing resistance to cellular damage. 30 Male albino rats were divided into six groups ( n = 5): 1) control group; 2) treatment group with date extract (1 g/kg B.W.); 3) treatment group with 1/20 LD50 of fipronil; 4) treatment group with 1/40 LD50 of fipronil; 5) treatment group with 1/20 LD50 of fipronil + 1 g/kg date extract; and 6) treatment group with 1/40 LD50 of fipronil + 1 g/kg dates extract. Date extract showed a high content of phenolic compounds and antioxidant properties. Fipronil increased 8-hydroxy-2-deoxyguanosine levels and lipid peroxidation by malondialdehyde but decreased the total antioxidant capacity in plasma. Moreover, glutathione, catalase, and superoxide dismutase levels in the liver and kidney decreased, along with histopathological abnormalities. Additionally, tail moment parameters of liver DNA and micronucleus frequencies in the bone marrow increased. This study showed that fipronil-induced various health hazards in vivo, whereas date extract alleviated the said toxicological effects. However, date extract failed to reduce genotoxicity.


Asunto(s)
Antioxidantes , Phoeniceae , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Desoxiguanosina/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Hígado , Malondialdehído/metabolismo , Estrés Oxidativo , Phoeniceae/metabolismo , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Pirazoles , Ratas , Superóxido Dismutasa/metabolismo
5.
Environ Anal Health Toxicol ; 37(2): e2022011-0, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35878919

RESUMEN

Imidacloprid (IMI), the main component of neonicotinoid insecticides, promotes oxidative stress and genotoxicity in mammals. The aim of this experiment is to assess oxidative stress in liver cells and genotoxicity of erythrocytes for rats exposed to sub-lethal doses of IMI and the protective effects for Rhodophyta as antioxidant material versus imidacloprid. A total of 30 adult male albino rats (average body weight, 190-200 g) were divided into six groups (n=5) as follows: group 1 served as the control, group 2 received 200 mg/kg red algae, group 3 received 45 mg/kg IMI (high-dose group), group 4 received 22.5 mg/kg IMI (low-dose group), group 5 received 200 mg/kg red algae +45 mg/kg IMI, and group 6 received 200 mg/kg red algae +22.5 mg/kg IMI. After 28 d of treatment, the antioxidant activity of the crude extract of red algae was assessed in terms of free radical scavenging activity and found to be higher in TCA (75.57%) followed by DPPH (50.08%) at concentration 100 µg extract and a significant increase in lipid peroxidation and reductions in glutathione were observed in liver cells were intoxicated with high and low doses of IMI. Moreover decreases in catalase and glutathione peroxidase parameters in same previous groups which indicated oxidative stress. In addition significant increases in micronucleus frequency (MN) in the bone marrow of the rats as a genotoxicity marker which indicated DNA damage in erythrocytes cells with alterations in the histopathology of liver cells were also noted such as necrosis, inflammatory cells, infiltration, and necrobiotic changes. Whereas Rhodophyta succeeded in alleviation the oxidative damage and genotoxicity induced by the insecticide. In conclusion, IMI demonstrates hazardous effects, such as alterations in antioxidant status and mutagenicity of erythrocytes and polysaccharides from Rhodophyta has good antioxidant activity in vivo model systems against imidacloprid.

7.
Biol Trace Elem Res ; 200(2): 551-559, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33821416

RESUMEN

The current study aimed to evaluate the harmful effect of chlorpyrifos (CPF) on the reproductive functions and fertility in male rats and to assess the protective role of zinc (Zn) in improving the adverse effects of CPF on male fertility. Sixty mature male rats were divided into four groups: Group 1: The control group was orally administered with the corresponding dose of corn oil. Group 2 animals received chlorpyrifos (1 mg/kg, oral). Group 3 rats received oral zinc (25 mg/kg) daily. Group 4 animals received oral zinc treatment (25 mg/kg). CPF caused a significant decrease in the body and reproductive organs' weights, sperm count, sperm motility percent, serum testosterone, FSH, and LH. The CPF-treated group showed a significant increase in dead sperm percent and sperm abnormalities. CPF induced a significant internucleosomal DNA fragmentation and marked histological alterations in the testes of treated male rats. Conversely, co-treatment with Zn improved the reproductive organs weights, sperm characteristics, internucleosomal DNA fragmentation, and histological alterations of the testes. In conclusion, CPF triggered significant detrimental effects on male reproductive organs and functions and the co-treatment with zinc partly alleviate the injurious effects of CPF on male fertility.


Asunto(s)
Cloropirifos , Animales , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Masculino , Estrés Oxidativo , Ratas , Motilidad Espermática , Testículo/metabolismo , Zinc/metabolismo
8.
Environ Sci Pollut Res Int ; 27(31): 39507-39515, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32651782

RESUMEN

The present study was led to investigate the defensive role of Terminalia laxiflora extract (TLE) on fipronil (FPN) induced hepatotoxicity and nephrotoxicity in male rats. Rats were administered with TLE (100 mg/kg) against the renal toxicity and hepatotoxicity induced by administration of FPN (10.5 mg/kg) for 30 days. At the end of the experimental period, the serum, liver, and kidneys were harvested and assessed for subsequent analysis. FPN administration to rats resulted in a significant elevation of serum transaminases, urea, and creatinine. Also, FPN-treated groups exhibited a marked reduction in total protein and albumin levels. Compared with the control group, the level of malondialdehyde (MDA) was elevated in groups treated with FPN, whereas superoxide dismutase (SOD), catalase (CAT) activities, and glutathione levels were distinctly reduced in this group. Significant increases in genomic DNA fragmentation and the expression level of the caspase-3 gene were also recorded. The biochemical result was supported by histopathological findings. Co-administration of TLE along with FPN significantly diminished the liver and kidney function tests decreased the level of lipid peroxidation, and enhanced all the antioxidant enzymes, while also diminishing the expression of caspase-3 and DNA laddering, indicating amelioration of DNA damage. These results indicate that TLE plays a vital role in diminishing FPN-induced hepatotoxicity and nephrotoxicity.


Asunto(s)
Terminalia , Animales , Antioxidantes , Glutatión , Riñón , Peroxidación de Lípido , Masculino , Estrés Oxidativo , Extractos Vegetales , Pirazoles , Ratas , Ratas Wistar , Superóxido Dismutasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA