Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-7, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563220

RESUMEN

Recently, the world faced many epidemics which were caused by viral respiratory pathogens. Marine creatures including Asteroidea class have been one of the recent research topics due to their diverse and complex secondary metabolites. Some of these constituents exhibit antiviral activities. The present study aimed to extract and identify the potential antiviral compounds from Pentaceraster cumingi, Astropecten polyacanthus and Pentaceraster mammillatus. The results showed that promising activity of the methanolic extract of P. cumingi with 50% inhibitory concentration (IC50) of 3.21 mg/ml against MERS-CoV with a selective index (SI) of 13.975. The biochemical components of the extracts were identified by GC/MS analysis. The Molecular docking study highlighted the virtual mechanism of binding the identified compounds towards three PDB codes of MERS-CoV non-structural protein 10/16. Interestingly, 2-mono Linolein showed promising binding energy of -14.75 Kcal/mol with the second PDB code (5YNI) and -15.22 Kcal/mol with the third PDB code (5YNQ).

2.
J Genet Eng Biotechnol ; 22(1): 100334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494269

RESUMEN

BACKGROUND: One of the most dangerous problems that the world faced recently is viral respiratory pathogens. Marine creatures, including Echinodermata, specially Asteroidea class (starfish) have been extensively studied due to their miscellaneous bioactivities, excellent pharmacological properties, and complex secondary metabolites, including steroids, steroidal glycosides, anthraquinones, alkaloids, phospholipids, peptides, and fatty acids. These chemical constituents show antiviral activities against a wide range of viruses, including respiratory viruses. RESULTS: The present study aimed at the identification of potential antiviral compounds from some starfish species. The bioactive compounds from Pentaceraster cumingi, Astropecten polyacanthus, and Pentaceraster mammillatus were extracted using two different solvents (ethyl acetate and methanol). The antiviral activity against influenza A/H1N1 virus showed that ethyl acetate extract from Pentaceraster cumingi has the highest activity, where the selective index was 150.8. The bioactive compounds of this extract were identified by GC/MS analysis. The molecular docking study highlighted the virtual mechanism of binding of the identified compounds towards polymerase basic protein 2 and neuraminidase for H1N1 virus. Interestingly, linoleic acid showed promising binding energy of -10.12 Kcal/mol and -24.20 Kcal/mol for the selected two targets, respectively, and it formed good interactive modes with the key amino acids inside both proteins. CONCLUSION: The molecular docking analysis showed that linoleic acid was the most active antiviral compound from P. cumingi. Further studies are recommended for in-vitro and in-vivo evaluation of this compound against influenza A/H1N1 virus.

3.
Nat Prod Res ; : 1-7, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589288

RESUMEN

The ongoing threat of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the importance of developing effective antiviral treatments. Current research was conducted to identify potential antiviral compounds from soft corals: Sinularia leptoclados, Sarcophyton ehrenbergi, Nephthea sp., Sarcophyton glaucum and Sarcophyton regulare. The antiviral activities of soft corals extracts were evaluated against MERS-CoV. Gas chromatography-mass spectrometry (GC-MS) was used to identify bioactive compounds. The molecular docking was performed to examine the identified compounds for their binding potentials towards three pathogenic factors of MERS-CoV: main protease, spike and non-structural protein 16/10 complex. The methanolic extract of soft coral Sarcophyton regulare exhibited the most promising activity with 50% inhibitory concentration (IC50) of 4.29 µg/ml and selective index (SI) of 112.2. Among the identified compounds in the active fraction, the molecular docking showed that two fatty acid esters: hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester and octadecanoic acid, 2-hydroxy-1 (hydroxymethyl) ethyl ester had promising docking scores.

4.
J Biomol Struct Dyn ; 41(16): 7786-7793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36129119

RESUMEN

Cancer is still an area of continuous research for finding more effective and selective agents, so our study aimed to explore new anticancer medicines from Cone snails' venoms as marine natural products with promising biological activities. Venoms from seven cone snails collected from two locations on the Red Sea coast (Marsa Alam (Ma) and Hurghada (Hu)) were extracted and subjected to SDS for protein concentrations. The venoms of C. vexillum (Ma), C. vexillum (Hu), and C. flavidus were found to have the highest protein concentrations (2.66, 2.618, and 2.611 mg/mL, respectively). The venom of C. vexillum (Ma) was found to be cytotoxic against the lung cancer cell line A549 (IC50 = 4.511 ± 0.03 µg/mL). On the other hand, the venom of C. flavidus showed a strong cytotoxic effect on both liver and lung cancer cell lines (IC50 = 1.593 ± 0.05 and 7.836 ± 0.4 µg/mL, respectively) when compared to their normal cell lines. Investigating the apoptotic cell death of C. flavidus venom on HepG2 cell lines, it showed total apoptotic cell death by 22.42-fold compared to untreated control and arresting the cell cycle at G2/M phase. Furthermore, its apoptotic cell death in HepG2 cells was confirmed through the upregulation of pro-apoptotic markers and down-regulation of Bcl-2 in both gene and protein expression levels. These findings confirmed the cytotoxic activity of C. flavidus venom through apoptotic cell death in HepG2 cells. So, a detailed study highlighting its structure and molecular target for developing new anticancer agents from natural sources is required.Communicated by Ramaswamy H. Sarma.

5.
J Biotechnol ; 260: 11-17, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28859954

RESUMEN

Wastewater from textile industries contains azo dye residues that negatively affect most environmental systems. The biological treatment of these wastes is the best option due to safety and cost concerns. Here we isolated and identified 19 azo dye-degrading fungi and optimized conditions resulting in enhanced degradation. The fungi belonged to five species of Aspergillus and a single Lichtheimia sp. All fungi were evaluated for their ability to decolorize 20 azo dyes. While the most easily transformable azo dye was direct violet (decolorization ranged from 71.1 to 93.3%), the most resistant to decolorization was fast green azo dye. The greatest degradation potential of azo dyes (direct violet and methyl red) was optimized using the most promising four fungal strains and changing media glucose concentration, nitrogen source, and micronutrients. Biomass, lignin peroxidase, and laccases production were also determined in the optimization studies. The decolorization of both azo dyes by the four fungal strains was greatly enhanced by glucose supplementation. The fungal strains were not able to produce lignin peroxidases in the absence of organic nitrogen source. Both yeast extract and casamino acid supplementation enhanced decolorization of direct violet and methyl red dyes and production of lignin peroxidase by the fungal strains. In contrast, the laccases were absent in the similar medium enriched with the same organic nitrogen sources.


Asunto(s)
Aspergillus/metabolismo , Compuestos Azo/metabolismo , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Compuestos Azo/análisis , Mucorales/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
6.
Plant Physiol Biochem ; 108: 191-202, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27448793

RESUMEN

Silymarin, a Silybum marianum seed extract containing a mixture of flavonolignans including silybin, is being used as an antihepatotoxic therapy for liver diseases. In this study, the enhancing effect of gamma irradiation on plant growth parameters of S. marianum under salt stress was investigated. The effect of gamma irradiation, either as a single elicitor or coupled with salinity, on chalcone synthase (CHS) gene expression and silybin A + B yield was also evaluated. The silybin A + B content in S. marianum fruits was estimated by liquid chromatography-mass spectrometry (LC-MS/MS). An increase in silybin content was accompanied by up-regulation of the CHS1, CHS2 and CHS3 genes, which are involved in the silybin biosynthetic pathway. The highest silybin A + B production (0.77 g/100 g plant DW) and transcript levels of the three studied genes (100.2-, 91.9-, and 24.3-fold increase, respectively) were obtained with 100GY gamma irradiation and 4000 ppm salty water. The CHS2 and CHS3 genes were partially sequenced and submitted to the NCBI database under the accession numbers KT252908.1 and KT252909.1, respectively. Developing new approaches to stimulate silybin biosynthetic pathways could be a useful tool to potentiate the use of plants as renewable resources of medicinal compounds.


Asunto(s)
Aciltransferasas/genética , Silybum marianum/genética , Silimarina/metabolismo , Aciltransferasas/metabolismo , Frutas/genética , Frutas/metabolismo , Rayos gamma , Regulación de la Expresión Génica de las Plantas , Germinación , Silybum marianum/metabolismo , Silybum marianum/efectos de la radiación , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Salinidad , Tolerancia a la Sal , Semillas/crecimiento & desarrollo , Silibina , Silimarina/genética
7.
Nat Prod Res ; 30(16): 1816-23, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26336904

RESUMEN

Thirty actinomycete isolates were isolated from soil and tested against Candida albicans in vitro. The active isolate was identified by 16s-rRNA gene sequencing method as Streptomyces toxytricini. The antifungal compound was extracted with ethyl acetate followed by diethyl ether. Both HPLC and GC-MS analysis confirmed presence of one pure compound in the diethyl ether extract. The compound is a yellow liquid has a maximum absorbance at 240 nm in methanol. The chemical structure was elucidated by 1D and 2D-NMR and IR analyses. The elucidated molecular formula was C36H54O14. The compound is a polyacetal tricyclononane derivative, composed of a tricyclononane ring attached from the carbon atom number four with an oligo-acetal chain (six acetal groups in chain) and from the carbon atom number seven with a methoxy carbonyl benzene-1,3-dicarboxylic acid. The purposed name is: 4- {[tricycle(3.2.1.1(1,3))non-8-yl] methoxy carbonyl benzene-1,3-dicarboxylic acid} (2,4,5,6,7,8,9 heptaoxa, 3-ethoxy, 5,6,7,9-tetramethyl unidecane).


Asunto(s)
Antifúngicos/aislamiento & purificación , Candida albicans/efectos de los fármacos , Streptomyces/química , Actinobacteria/química , Alcanos , Antifúngicos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA