Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lipids ; 55(5): 425-433, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31879987

RESUMEN

Haematococcus pluvialis is a green microalga used in the algal biotechnology industry that can accumulate considerable amounts of storage triacylglycerol (TAG) and astaxanthin, which is a high-value carotenoid with strong antioxidant activity, under stress conditions. Diacylglycerol acyltransferase (DGAT) catalyzes the last step of the acyl-CoA-dependent TAG biosynthesis and appears to represent a bottleneck in algal TAG formation. In this study, putative H. pluvialis DGAT2 cDNA (HpDGAT2A, B, D and E) were identified from a transcriptome database and were subjected to sequence-based in silico analyses. The coding sequences of HpDGAT2B, D, and E were then isolated and characterized through heterologous expression in a TAG-deficient Saccharomyces cerevisiae strain H1246. The expression of HpDGAT2D allowed the recovery of TAG biosynthesis in this yeast mutant, and further in vitro enzymatic assays confirmed that the recombinant HpDGAT2D possessed strong DGAT activity. Interestingly, the recombinant HpDGAT2D displayed sigmoidal kinetics in response to increasing acyl-CoA concentrations, which has not been reported in plant or algal DGAT2 in previous studies.


Asunto(s)
Chlorophyceae/enzimología , Diacilglicerol O-Acetiltransferasa/genética , Proteínas Recombinantes/genética , Transcriptoma/genética , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Regulación Alostérica/genética , Sitio Alostérico/genética , Simulación por Computador , ADN Complementario/genética , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Regulación Enzimológica de la Expresión Génica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
2.
Biochem Biophys Res Commun ; 503(3): 1228-1234, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007436

RESUMEN

Efforts by lichenologists to characterize lichen polyketide synthases (PKS) through heterologous expression experiments have so far proved unfruitful. A determination of systematic causes of failure is therefore required. Three hypotheses involving the ketosynthase (KS) domain of lichen polyketide synthases (PKS) from Cladonia uncialis are tested: (1) Horizontal versus vertical gene transfer; (2) Typical versus atypical active site residues; (3) Typical versus atypical tertiary protein structure and active site architecture. Phylogenetics, amino acid sequence alignment, and protein modelling indicate that C. uncialis PKS evolved through vertical transfer from Ascomycota fungi, possess Cys-His-His catalytic triads typical of KS from most organisms, and possess protein and catalytic site architecture identical to well-characterized KS from non-lichen organisms. Though the reason for lack of functional activity in heterologous hosts remains unknown, complications involving the KS are ruled out as a likely explanation. Heterologous translation of lichen PKS (or parts thereof) have not been reported. We demonstrate heterologous translation of two lichen KS domains in E. coli.


Asunto(s)
Ascomicetos/enzimología , Líquenes/enzimología , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Dominio Catalítico/genética , Modelos Moleculares , Filogenia , Sintasas Poliquetidas/genética , Reacción en Cadena de la Polimerasa
3.
J Nat Prod ; 81(4): 723-731, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29485276

RESUMEN

Lichens are symbionts of fungi and algae that produce diverse secondary metabolites with useful properties. Little is known of lichen natural product biosynthesis because of the challenges of working with lichenizing fungi. We describe the first attempt to comprehensively profile the genetic secondary metabolome of a lichenizing fungus. An Illumina platform combined with the Antibiotics and Secondary Metabolites Analysis Shell (FungiSMASH, version 4.0) was used to sequence and annotate assembled contigs of the fungal partner of Cladonia uncialis. Up to 48 putative gene clusters are described comprising type I and type III polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), hybrid PKS-NRPS, and terpene synthases. The number of gene clusters revealed by this work dwarfs the number of known secondary metabolites from C. uncialis, suggesting that lichenizing fungi have an unexplored biosynthetic potential.


Asunto(s)
Genoma de Planta/genética , Líquenes/genética , Familia de Multigenes/genética , Ascomicetos/genética , Productos Biológicos/metabolismo , Líquenes/microbiología , Metaboloma/genética , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Secuenciación Completa del Genoma/métodos
4.
J Nat Prod ; 81(4): 732-748, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29485282

RESUMEN

Lichens are renowned for their diverse natural products though little is known of the genetic programming dictating lichen natural product biosynthesis. We sequenced the genome of Cladonia uncialis and profiled its secondary metabolite biosynthetic gene clusters. Through a homology searching approach, we can now propose specific functions for gene products as well as the biosynthetic pathways that are encoded in several of these gene clusters. This analysis revealed that the lichen genome encodes the required enzymes for patulin and betaenones A-C biosynthesis, fungal toxins not known to be produced by lichens. Within several gene clusters, some (but not all) genes are genetically similar to genes devoted to secondary metabolite biosynthesis in Fungi. These lichen clusters also contain accessory tailoring genes without such genetic similarity, suggesting that the encoded tailoring enzymes perform distinct chemical transformations. We hypothesize that C. uncialis gene clusters have evolved by shuffling components of ancestral fungal clusters to create new series of chemical steps, leading to the production of hitherto undiscovered derivatives of fungal secondary metabolites.


Asunto(s)
Líquenes/genética , Familia de Multigenes/genética , Ascomicetos/genética , Vías Biosintéticas/genética , Genoma de Planta/genética , Líquenes/microbiología , Micotoxinas/genética , Filogenia , Transformación Genética/genética
5.
J Nat Prod ; 79(6): 1645-50, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27264554

RESUMEN

A transcribed polyketide synthase (PKS) gene has been identified in the lichen Cladonia uncialis. The complete nucleotide sequence of this PKS was determined from the amplified cDNA, and an assignment of individual domains was accomplished by homology searching using AntiSMASH. A scan of the complete genome sequence of C. uncialis revealed the accessory genes associated with this PKS gene. A homology search has identified that several genes in this cluster are similar to genes responsible for the biosynthesis of terrein in Aspergillus terreus. This permitted assignment of putative function to each of the genes in this new C. uncialis cluster. It is proposed that this gene cluster is responsible for the biosynthesis of a halogenated iscoumarin. This is the first report linking a gene cluster to a halogenated metabolite in lichen.


Asunto(s)
Aciltransferasas/metabolismo , Líquenes/química , Ligasas/metabolismo , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Ascomicetos/química , Aspergillus/metabolismo , Secuencia de Bases , Líquenes/enzimología , Datos de Secuencia Molecular , Estructura Molecular , Familia de Multigenes , Filogenia , Sintasas Poliquetidas/metabolismo , Análisis de Secuencia de ADN
6.
Fungal Biol ; 120(3): 306-16, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26895859

RESUMEN

To identify the biosynthetic gene cluster responsible for the biosynthesis of the polyketide usnic acid we carried out the de novo genome sequencing of the fungal partner of Cladonia uncialis. This was followed by comprehensive in silico annotation of polyketide synthase (PKS) genes. The biosynthesis of usnic acid requires a non-reducing PKS possessing a carbon methylation (CMeT) domain, a terminal Claisen cyclase (CLC) domain, and an accompanying oxidative enzyme that dimerizes methylphloracetophenone to usnic acid. Of the 32 candidate PKS genes identified in the mycobiont genome, only one was identified as consistent with these biosynthetic requirements. This gene cluster contains two genes encoding a non-reducing PKS and a cytochrome p450, which have been respectively named methylphloracetophenone synthase (MPAS) and methylphloracetophenone oxidase (MPAO). Both mpas and mpao were demonstrated to be transcriptionally active by reverse transcriptase-PCR of the mRNA in a lichen sample that was observed by HPLC to produce usnic acid. Phylogenetic analysis of the bioinformatically identified ketosynthase (KS) and CLC domains of MPAS demonstrated that mpas grouped within a unique clade and that mpas could be used as a phylogenetic probe to identify other MPAS genes.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Benzofuranos/metabolismo , Vías Biosintéticas/genética , Genoma Fúngico , Familia de Multigenes , Análisis de Secuencia de ADN , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Ligasas/genética , Oxidorreductasas/genética , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
7.
Mol Genet Genomics ; 290(2): 493-504, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25307067

RESUMEN

Ribosomal frameshifting, a translational error, catastrophically alters the amino acid composition of the nascent protein by shifting the reading frame from the intended contiguous trinucleotide reading. Frameshift events waste energy and resources, and peptide products have unpredictable cytotoxic effects. The 'Ambush Hypothesis' (Seligmann and Pollock 2004, DNA Cell Biol 23:701-5) suggests there is a selective pressure favouring the evolution of out-of-frame ('hidden') stop codons. Although this hypothesis has gained empirical support through whole-genome studies, it is presently unknown whether it can be applied at a single-gene scale. Herein, we report such an investigation using the gene, polyketide synthase (PKS), among species of fungi. Contrary to expectation, genes presented with significantly lower number of hidden stop codons than expected in a selection-neutral model (p < 0.0005), suggesting both non-adherence to the ambush hypothesis as well as suppression of hidden stop codon evolution. It is known that there are multiple adaptive considerations determining codon selection during evolution, and that the information-holding potential of the genetic code is finite. We hypothesize that the reason for low hidden stops in PKS genes is due to competing 'codon biases' that are prioritized over the selective pressure favouring the emergence of hidden stops. Future studies of the ambush hypothesis in the context of other drivers of codon bias may allow this hypothesis to be molded into a comprehensive genetic theory that can be integrated within the broader genetic theory of codon bias and applied to the genetic code at any scale of analysis.


Asunto(s)
Codón de Terminación , Modelos Genéticos , Composición de Base , Secuencia de Bases , Evolución Molecular , Sistema de Lectura Ribosómico , Proteínas Fúngicas/genética , Sintasas Poliquetidas/genética , Selección Genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA