Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 13(7): e0198469, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30024877

RESUMEN

Solidified self-nanoemulsifying drug delivery systems (SNEDDS) offer strong option to enhance both drug aqueous solubility and stability. The current study was designed to evaluate the potential stabilization benefits of solidifying cinnarizine (CN) liquid SNEDDS into single and multi-layer self-nanoemulsifying pellets (SL-SNEP and ML-SNEP, respectively). The selected formulations were enrolled into accelerated, intermediate and long-term stability studies. The chemical stability was assessed based on the % of intact CN remaining in formulation. The physical stability was assessed by monitoring the in-vitro dissolution and physical appearance of the formulations. The degradation pathway of CN within lipid-based formulation was proposed to involve a hydroxylation reaction of CN molecule. The chemical stability study revealed significant CN degradation in liquid SNEDDS, SL-SNEP and ML-SNEP (lacking moisture-sealing) within all the storage conditions. In contrast, the moisture sealed ML-SNEP showed significant enhancement of CN chemical stability within the formulation. In particular, ML-SNEP coated with Kollicoat Smartseal 30D showed superior CN stabilization and no significant decrease in dissolution efficiency, at all the storage conditions. The observed stability enhancement is owing to the complete isolation between CN and SNEDDS layer as well as the effective moisture protection provided by Kollicoat Smartseal 30D. Hence, the degradation problem could be eradicated completely. The incorporation of silicon dioxide had an important role in the inhibition of pellet agglomeration upon storage. Accordingly, ML-SNEP coated with Kollicoat Smartseal 30D and/or silicon dioxide could be an excellent dosage form that combine dual enhancement of CN solubilization and stabilization.


Asunto(s)
Cinarizina/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Formas de Dosificación , Estabilidad de Medicamentos , Emulsiones , Glicerol/análogos & derivados , Glicerol/química , Ácido Oléico/química , Povidona/química , Dióxido de Silicio/química , Solubilidad , Agua/química
2.
AAPS PharmSciTech ; 19(5): 2087-2102, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29696614

RESUMEN

Beside their solubility limitations, some poorly water-soluble drugs undergo extensive degradation in aqueous and/or lipid-based formulations. Multi-layer self-nanoemulsifying pellets (ML-SNEP) introduce an innovative delivery system based on isolating the drug from the self-nanoemulsifying layer to enhance drug aqueous solubility and minimize degradation. In the current study, various batches of cinnarizine (CN) ML-SNEP were prepared using fluid bed coating and involved a drug-free self-nanoemulsifying layer, protective layer, drug layer, moisture-sealing layer, and/or an anti-adherent layer. Each layer was optimized based on coating outcomes such as coating recovery and mono-pellets%. The optimized ML-SNEP were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), in vitro dissolution, and stability studies. The optimized ML-SNEP were free-flowing, well separated with high coating recovery. SEM showed multiple well-defined coating layers. The acidic polyvinylpyrrolidone:CN (4:1) solution presented excellent drug-layering outcomes. DSC and XRD confirmed CN transformation into amorphous state within the drug layer. The isolation between CN and self-nanoemulsifying layer did not adversely affect drug dissolution. CN was able to spontaneously migrate into the micelles arising from the drug-free self-nanoemulsifying layer. ML-SNEP showed superior dissolution compared to Stugeron® tablets at pH 1.2 and 6.8. Particularly, on shifting to pH 6.8, ML-SNEP maintained > 84% CN in solution while Stugeron® tablets showed significant CN precipitation leaving only 7% CN in solution. Furthermore, ML-SNEP (comprising Kollicoat® Smartseal 30D) showed robust stability and maintained > 97% intact CN within the accelerated storage conditions. Accordingly, ML-SNEP offer a novel delivery system that combines both enhanced solubilization and stabilization of unstable poorly soluble drugs.


Asunto(s)
Cinarizina/química , Sistemas de Liberación de Medicamentos/métodos , Emulsionantes/química , Antagonistas de los Receptores Histamínicos H1/química , Agua/química , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Cinarizina/metabolismo , Composición de Medicamentos/métodos , Implantes de Medicamentos , Liberación de Fármacos , Emulsionantes/metabolismo , Antagonistas de los Receptores Histamínicos H1/metabolismo , Solubilidad , Agua/metabolismo , Difracción de Rayos X
3.
Braz. j. pharm. sci ; 52(4): 653-667, Oct.-Dec. 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951885

RESUMEN

ABSTRACT Formulators face great challenges in adopting systematic approaches for designing self-nanoemulsifying formulations (SNEFs) for different drug categories. In this study, we aimed to build-up an advanced SNEF development framework for weakly basic lipophilic drugs, such as cinnarizine (CN). First, the influence of formulation acidification on CN solubility was investigated. Second, formulation self-emulsification in media with different pH was assessed. Experimentally designed phase diagrams were also utilized for advanced optimization of CN-SNEF. Finally, the optimized formulation was examined using cross polarizing light microscopy for the presence of liquid crystals. CN solubility was significantly enhanced upon external and internal acidification. Among the various fatty acids, oleic acid-based formulations showed superior self-emulsification in all the tested media. Surprisingly, formulation turbidity and droplet size significantly decreased upon equilibration with CN. The design was validated using oleic acid/Imwitor308/Cremophor El (25/25/50), which showed excellent self-nanoemulsification, 43-nm droplet size (for CN-equilibrated formulations), and 88 mg/g CN solubility. In contrast to CN-free formulations, CN-loaded SNEF presented lamellar liquid crystals upon 50% aqueous dilution. These findings confirmed that CN-SNEF efficiency was greatly enhanced upon drug incorporation. The adopted strategy offers fast and accurate development of SNEFs and could be extrapolated for other weakly basic lipophilic drugs.


Asunto(s)
Solubilidad/efectos de los fármacos , Optimización de Procesos/clasificación , Cinarizina/análisis , Composición de Medicamentos/estadística & datos numéricos , Acidificación/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...