Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500618

RESUMEN

The purpose of this study was to explore the effects of roasting linseeds on the pigment, lipid profile, bioactive components, and oxidative stability of the extracted oils. The linseed varieties Giza 11, Giza 12, Sakha 3, and Sakha 6 were roasted at 180 °C for 10 min, and the oils were extracted by cold pressing. The results showed that, after roasting, there was an increase in oil percentage and peroxide value, as well as small increases in p-anisidine and acid values. Roasting also caused an increase in chlorophyll content, while lutein and ß-carotene tend to slightly decrease, except in the Giza 11 variety. The total phenolics content was markedly enhanced after roasting. Omega-3 fatty acids were not affected by the roasting process. The total amounts of tocochromanol were found to decrease in the Giza 12 and Sakha 6 varieties after roasting. Plastochromanol-8 increased in all varieties after roasting. The phytosterol composition was minimally affected by roasting. Roasting enhanced the stability of the extracted oils, increasing the induction period and decreasing EC50 values. These results may thus help to discriminate between the different linseed varieties and serve to recommend the use of roasting to enhance the oxidative stability of extracted oil.


Asunto(s)
Ácidos Grasos Omega-3 , Lino , Fitosteroles , Aceites de Plantas , Semillas , Aceite de Linaza , Ácidos Grasos
2.
Plants (Basel) ; 11(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36079610

RESUMEN

The modern utilization of essential oils such as ginger oil (GO) as an anti-aflatoxin represents a potential target for food preservation and safety; however, the mechanism of action is still unclear. Nanoemulsions, through an edible coating, can enhance the oil's bioactivity, increase its hydrophilicity, and extend the final product's shelf-life. In the present study, two edible films for the GO nanoemulsion were prepared by ultrasonication using carboxymethyl cellulose (FB1-GO) and sodium alginate (FB2-GO). The droplet size of FB2-GO was finer (126.54 nm) compared to FB1-GO (289.77 nm). Meanwhile, both had high stability proved by z-potential; +31.54 mV (FB1-GO) and +46.25 mV (FB2-GO) with low PDI values (<0.4). Using gas chromatography-mass spectrometry, the hydrodistilled GO showed 25 compounds, representing 99.17% of the total oil, with α-zingiberene (29.8%), geranial (10.87%), ß-bisabolene (8.19%), and ar-curcumene (5.96%) as the predominant. A dramatic increase in α-zingiberene, α-bisabolene and ar-curcumene was due to the homogenization conditions in both FB1-GO and FB2-GO compared to the GO. The FB1-GO exhibited superior antibacterial activity against the examined strains of bacterial pathogens, while FB2-GO was more effective as an antifungal agent on the tested Aspergillus fungi strains. In a simulated liquid media, FB2-GO inhibited the total growth of fungi by 84.87−92.51% and showed the highest reduction in the aflatoxin amount produced. The in silico study presented that, among the GO volatile constituents, sesquiterpenes had the highest binding free energies against the enzymes responsible for aflatoxin production compared to monoterpenes. α-Bisabolene showed the highest affinity toward polyketide synthase (−7.5 Kcal/mol), while ar-curcumene was the most potent against cytochrome P450 monooxygenase (−8.3 Kcal/mol). The above findings clarify the reasons for aflatoxin reduction in simulated media during incubation with FB1-GO and FB2-GO.

3.
Foods ; 11(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35010246

RESUMEN

Food is the source from where a person obtains the body's daily requirements. People's current daily habits force them to consume fast food, which is known for its poor nutritional and safety features. So, it is urgent to provide a suitable substitution product to solve this issue. The present investigation aimed to produce a bar with a dual function: nutritional and long shelf life. Two materials were chosen to support the bar manufacturing regarding their bioactive contents, barley malt grass (BMG) and pomegranate byproducts (PBD). Chemical composition, antioxidant, and antimicrobial potency were measured. Β-carotene, vitamin C, and tocopherol were determined using HPLC apparatus. Extracts' bio-safety against cell lines was determined, besides their enhancement against cell-death factors. Simulation experiments were designed to evaluate extracts' impact to extend bar shelf life. Data represented the richness of essential minerals and fibers. Results of the FTIR reflected the existence of various active groups in the contents. Phenolic fractions of PBD are distinctive for their content of ellagic (39.21 ± 5.42 mg/kg), ferulic acid fractions (31.28 ± 4.07 mg/kg) which is a known with antifungal activity. Extracts and their mix (1:1) represented inhibition zone diameters that reach 15.1 ± 1.66 mm for bacteria and 23.81 ± 1.41 mm for fungi. Extracts were shown to have better safety against the cell line strain of hepatic HL-7702, with an elevation of a harmful dose of aflatoxin (IC50 304.5 µg/mL for PBD, IC50 381 µg/mL for BMG). Sensory evaluation of fortified bars reflected a preferable application of mix (1:1) due to color attributes and panelist evaluations, the same result recorded for simulation studies. The experiment recommended applying a mix (1:1) of BMG: PBD in addition to their extracts (200 mg/kg dough) for functional bar manufacturing with antifungal properties.

4.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885712

RESUMEN

Mandarin is a favorite fruit of the citrus family. Mandarin seeds are considered a source of nontraditional oil obtained from byproduct materials. This investigation aimed to assess the biomolecules of mandarin seeds and evaluated their antimycotic and antimycotoxigenic impact on fungi. Moreover, it evaluated the protective role of mandarin oil against aflatoxin toxicity in cell lines. The two types of extracted oil (fixed and volatile) were ecofriendly. The fatty acid composition, tocopherol, sterols, and carotenoids were determined in the fixed oil, whereas volatiles and phenolics were estimated in the essential oil. A mixture of the two oils was prepared and evaluated for its antimicrobial impact. The reduction effect of this mixture was also investigated to reduce mycotoxin secretion using a simulated experiment. The protective effect of the oil was evaluated using healthy strains of cell lines. Fixed oil was distinguished by the omega fatty acid content (76.24%), lutein was the major carotenoid (504.3 mg/100 g) and it had a high ß-sitosterol content (294.6 mg/100 g). Essential oil contained limonene (66.05%), α-pinene (6.82%), ß-pinene (4.32%), and γ-terpinene (12.31%) in significant amounts, while gallic acid and catechol were recorded as the dominant phenolics. Evaluation of the oil mix for antimicrobial potency reflected a considerable impact against pathogenic bacteria and toxigenic fungi. By its application to the fungal media, this oil mix possessed a capacity for reducing mycotoxin secretion. The oil mix was also shown to have a low cytotoxic effect against healthy strains of cell lines and had potency in reducing the mortality impact of aflatoxin B1 applied to cell lines. These results recommend further study to involve this oil in food safety applications.


Asunto(s)
Bacterias/efectos de los fármacos , Citrus/química , Aceites Volátiles/química , Aceites de Plantas/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias/patogenicidad , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/farmacología , Monoterpenos Ciclohexánicos/química , Monoterpenos Ciclohexánicos/farmacología , Frutas/química , Hongos/efectos de los fármacos , Humanos , Limoneno/química , Limoneno/farmacología , Micotoxinas/antagonistas & inhibidores , Micotoxinas/química , Aceites Volátiles/farmacología , Fitosteroles/química , Fitosteroles/farmacología , Aceites de Plantas/farmacología , Sitoesteroles/química , Sitoesteroles/farmacología
5.
Toxicol Rep ; 8: 1685-1692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589415

RESUMEN

Aflatoxigenic fungi and aflatoxins are still a principal challenge that threatened peanut production, marketing, and handling. This study aimed to face the problem using bioactive materials, which reduce fungi and mycotoxin contamination, Moringa extracts may be suitable for solving this challenge. Also, the study was compared the extracts of leaves and oil-free seeds. Fresh leaves and seeds were collected, dried, and milled, while oil was collected by cold pressing. The extracts were evaluated for total phenols, flavonoids, and antioxidants, the oil contents of fatty acids, tocopherol, and sterols were determined. An emulsion for protecting peanuts compositing of leaves extract carried by Moringa oil, and commercial emulsifier. Leaves extract evaluation reflected distinct properties of its fibers, total phenols, and flavonoids. It was recorded a microbial inhibition of bacteria and fungi. The values ​​for both minimal inhibition and fungicidal concentrations were recorded at 3.2 mg/mL and 490 µg/L, respectively. For oil, it showed a unique content, as oleic acid was the main fatty acid, with an affinity between palmitic and behenic in their ratios. Also, oil was recorded by high contents of alpha-tocopherol and Δ7-Campesterol, with 1.166 mg/kg oil as total sterols content. The leaves extract has also a unique capacity to inhibit toxigenic fungi. By applying the composite emulsion for peanut coating, results expressed a high CFU-count inhibition when it was inoculated by A. flavus strain compared to the control.

6.
J Fungi (Basel) ; 8(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35049970

RESUMEN

Fruit byproducts are considered a high source of bioactive molecules, which possess antioxidant activities. These antioxidants play principal functions in mycotoxin reduction. This study aimed to evaluate crude mandarin byproduct extract for its chemical interaction with fungal growth and suppression of mycotoxin production, and to illustrate whether the impact was regarding individual molecules or a synergistic antioxidation process. Extract contents were analyzed for their phenolic, flavonoids, and antioxidant activity. The fatty acid composition and volatile components were determined using the GC apparatus. The influence of the extract evaluated versus the standard phenolics of trans-ferulic and hesperidin were evaluated. The liposome technique was applied to prevent the antioxidant properties of the bioactive extract. The anti-mycotoxigenic effects of the liposomal and non-liposomal extract were determined in fungal media against the standard phenolics. The results manifested ferulic (235.54 ± 3.34 mg/100 g) and hesperidin (492.11 ± 1.15 mg/100 g) as high phenolics in the extract. Limonene was the main volatile (67.54 ± 1.74%), as well antioxidant activities determined in considerable values. The crude extract recorded efficiency as an anti-Fusarium agent, but less than the standard hesperidin applied in fungal media. The bioactive extract recorded possessed a reduction influence on mycotoxin production. The impact may be joining with its fungal inhibition or its component activity with the active groups on the mycotoxin molecule. The formation of liposomal extract enhanced its efficacy in mycotoxin reduction. This enhancement may illustrate its protective properties for antioxidant components of the bioactive extract.

7.
Toxins (Basel) ; 12(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260849

RESUMEN

Pomegranate, similar to other fruits, has juice-extraction by-products. Pomegranate seed oil (PGO) is a non-traditional oil with health benefits, rich in bioactive components. This study was aimed to assess PGO phytochemicals and their influence as bioactive components to reduce mycotoxin secretion. The encapsulation was applied in micro and nanoforms to protect the quality and enhance the efficacy of the oil. The PGO was extracted using ultrasound-assisted methods. Carotenoids, tocochromanols, sterols, phenolic, flavonoid, antioxidant, and antimicrobial activity were determined. The fatty acid profile was analyzed by the GC-MS, while mycotoxin was determined utilizing the HPLC apparatus. The toxicity and protective action of oil were examined using the hepatocytes' cell line. The resultant oil acts as oleoresin that is rich in bioactive molecules. Phenolics and antioxidant potency recorded higher values compared to traditional vegetable oils, whereas polyunsaturated fatty acids were 87.51%. The major fatty acid was conjugated punicic acid (81.29%), which has high biological effects. Application of the PGO on fungal media reduced aflatoxins secretion up to 63%, and zearalenone up to 78.5%. These results confirm the bio-functionality of oil to regulate the fungal secondary metabolites process. The PGO is a unique prospective non-traditional oil and has several functionalities in food, which achieve nutritional, antioxidant, and anti-mycotoxigenic activities.


Asunto(s)
Hongos/efectos de los fármacos , Micotoxinas/metabolismo , Aceites de Plantas/química , Aceites de Plantas/farmacología , Granada (Fruta)/química , Animales , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Línea Celular , Hepatocitos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...