Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401238, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075025

RESUMEN

The evolutionarily conserved extracellular signal-regulated kinase 2 (ERK2) is involved in regulating cellular signaling in both normal and pathological conditions. ERK2 expression is critical for human development, while hyperactivation is a major factor in tumor progression. Up to now, there have been no approved inhibitors that target ERK2, and as such, here we report on screening of a naturally occurring plant-based anticancerous compound-activity-target (NPACT) database for prospective ERK2 inhibitors. More than 1,500 phytochemicals were screened using in-silico molecular docking and molecular dynamics (MD) approaches. NPACT compounds with a docking score lower than a co-crystallized LHZ inhibitor (calc.-10.5 kcal/mol) were subjected to MD simulations. Binding energies (ΔGbinding) of inhibitor-ERK2 complexes over the MD course were estimated using an MM-GBSA approach. Based on MM-GBSA//100 ns MD simulations, the steroid zhankuic acid C (NPACT01034) demonstrated greater binding affinity against ERK2 protein than LHZ, with ΔGbinding values of -50.0 and -47.7 kcal/mol, respectively. Structural and energetical analyses throughout the MD course demonstrated stabilization of zhankuic acid C complexed with ERK2 protein. The anticipated ADMET properties of zhankuic acid C indicated minimal toxicity. Moreover, in-silico evaluation of fourteen ERK2 inhibitors in clinical trials demonstrated the higher binding affinity of zhankuic acid C towards ERK2 protein.

2.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570684

RESUMEN

BRD4 (bromodomain-containing protein 4) is an epigenetic reader that realizes histone proteins and promotes the transcription of genes linked to cancer progression and non-cancer diseases such as acute heart failure and severe inflammation. The highly conserved N-terminal bromodomain (BD1) recognizes acylated lysine residues to organize the expression of genes. As such, BD1 is essential for disrupting BRD4 interactions and is a promising target for cancer treatment. To identify new BD1 inhibitors, a SuperDRUG2 database that contains more than 4600 pharmaceutical compounds was screened using in silico techniques. The efficiency of the AutoDock Vina1.1.2 software to anticipate inhibitor-BRD4-BD1 binding poses was first evaluated based on the co-crystallized R6S ligand in complex with BRD4-BD1. From database screening, the most promising BRD4-BD1 inhibitors were subsequently submitted to molecular dynamics (MD) simulations integrated with an MM-GBSA approach. MM-GBSA computations indicated promising BD1 binding with a benzonaphthyridine derivative, pyronaridine (SD003509), with an energy prediction (ΔGbinding) of -42.7 kcal/mol in comparison with -41.5 kcal/mol for a positive control inhibitor (R6S). Pharmacokinetic properties predicted oral bioavailability for both ligands, while post-dynamic analyses of the BRD4-BD1 binding pocket demonstrated greater stability for pyronaridine. These results confirm that in silico studies can provide insight into novel protein-ligand regulators, specifically that pyronaridine is a potential cancer drug candidate.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Nucleares , Simulación del Acoplamiento Molecular , Proteínas Nucleares/metabolismo , Proteínas que Contienen Bromodominio , Factores de Transcripción/metabolismo , Ligandos , Proteínas de Ciclo Celular/metabolismo
3.
PLoS One ; 18(7): e0288919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494356

RESUMEN

An effective approach to reverse multidrug resistance (MDR) is P-glycoprotein (P-gp, ABCB1) transport inhibition. To identify such molecular regulators, the SuperNatural II database, which comprises > 326,000 compounds, was virtually screened for ABCB1 transporter inhibitors. The Lipinski rule was utilized to initially screen the SuperNatural II database, identifying 128,126 compounds. Those natural compounds were docked against the ABCB1 transporter, and those with docking scores less than zosuquidar (ZQU) inhibitor were subjected to molecular dynamics (MD) simulations. Based on MM-GBA binding energy (ΔGbinding) estimations, UMHSN00009999 and UMHSN00097206 demonstrated ΔGbinding values of -68.3 and -64.1 kcal/mol, respectively, compared to ZQU with a ΔGbinding value of -49.8 kcal/mol. For an investigation of stability, structural and energetic analyses for UMHSN00009999- and UMHSN00097206-ABCB1 complexes were performed and proved the high steadiness of these complexes throughout 100 ns MD simulations. Pharmacokinetic properties of the identified compounds were also predicted. To mimic the physiological conditions, MD simulations in POPC membrane surroundings were applied to the UMHSN00009999- and UMHSN00097206-ABCB1 complexes. These results demonstrated that UMHSN00009999 and UMHSN00097206 are promising ABCB1 inhibitors for reversing MDR in cancer and warrant additional in-vitro/in-vivo studies.


Asunto(s)
Resistencia a Antineoplásicos , Simulación de Dinámica Molecular , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Lípidos/farmacología , Simulación del Acoplamiento Molecular , Línea Celular Tumoral
4.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513931

RESUMEN

Multidrug resistance (MDR) is one of the most problematic issues in chemotherapeutic carcinoma therapy. The ABCB1 transporter, a drug efflux pump overexpressed in cancer cells, has been thoroughly investigated for its association with MDR. Thus, discovering ABCB1 inhibitors can reverse the MDR in cancer cells. In the current work, a molecular docking technique was utilized for hunting the most prospective ABCB1 inhibitors from the Toxin and Toxin-Target Database (T3DB). Based on the docking computations, the most promising T3DB compounds complexed with the ABCB1 transporter were subjected to molecular dynamics (MD) simulations over 100 ns. Utilizing the MM-GBSA approach, the corresponding binding affinities were computed. Compared to ZQU (calc. -49.8 kcal/mol), Emamectin B1a (T3D1043), Emamectin B1b (T3D1044), Vincristine (T3D4016), Vinblastine (T3D4017), and Vindesine (T3D2479) complexed with ABCB1 transporter demonstrated outstanding binding affinities with ΔGbinding values of -93.0, -92.6, -93.8, -92.2, and -90.8 kcal/mol, respectively. The structural and energetic investigations confirmed the constancy of the identified T3DB compounds complexed with the ABCB1 transporter during the 100 ns MD course. To mimic the physiological conditions, MD simulations were conducted for those identified inhibitors complexed with ABCB1 transporter in the presence of a POPC membrane. These findings revealed that Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, and Vindesine are promising ABCB1 inhibitors that can reverse the MDR. Therefore, subjecting those compounds to further in-vitro and in-vivo investigations is worthwhile.

5.
J Biomol Struct Dyn ; 41(23): 13977-13992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883864

RESUMEN

The failure of chemotherapy in the treatment of carcinoma is mainly due to the development of multidrug resistance (MDR), which is largely caused by the overexpression of P-glycoprotein (P-gp/ABCB1/MDR1). Until recently, the 3D structure of the P-gp transporter has not been experimentally resolved, which restricted the discovery of prospective P-gp inhibitors utilizing in silico techniques. In this study, the binding energies of 512 drug candidates in clinical or investigational stages were assessed as potential P-gp inhibitors employing in silico methods. On the basis of the available experimental data, the performance of the AutoDock4.2.6 software to predict the drug-P-gp binding mode was initially validated. Molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics-generalized Born surface area (MM-GBSA) binding energy computations were subsequently conducted to screen the investigated drug candidates. Based on the current results, five promising drug candidates, namely valspodar, dactinomycin, elbasvir, temsirolimus, and sirolimus, showed promising binding energies against P-gp transporter with ΔGbinding values of -126.7, -112.1, -111.9, -102.9, and -101.4 kcal/mol, respectively. The post-MD analyses revealed the energetical and structural stabilities of the identified drug candidates in complex with the P-gp transporter. Furthermore, in order to mimic the physiological conditions, the potent drugs complexed with the P-gp were subjected to 100 ns MD simulations in an explicit membrane-water environment. The pharmacokinetic properties of the identified drugs were predicted and demonstrated good ADMET characteristics. Overall, these results indicated that valspodar, dactinomycin, elbasvir, temsirolimus, and sirolimus hold promise as prospective P-gp inhibitors and warrant further invitro/invivo investigations.


Asunto(s)
Resistencia a Múltiples Medicamentos , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Dactinomicina/uso terapéutico , Estudios Prospectivos , Neoplasias/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/uso terapéutico , Sirolimus , Descubrimiento de Drogas , Resistencia a Antineoplásicos
6.
Sci Rep ; 13(1): 2146, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750593

RESUMEN

Sirtuin 2 (SIRT2) is a member of the sirtuin protein family, which includes lysine deacylases that are NAD+-dependent and organize several biological processes. Different forms of cancer have been associated with dysregulation of SIRT2 activity. Hence, identifying potent inhibitors for SIRT2 has piqued considerable attention in the drug discovery community. In the current study, the Natural Products Atlas (NPAtlas) database was mined to hunt potential SIRT2 inhibitors utilizing in silico techniques. Initially, the performance of the employed docking protocol to anticipate ligand-SIRT2 binding mode was assessed according to the accessible experimental data. Based on the predicted docking scores, the most promising NPAtlas molecules were selected and submitted to molecular dynamics (MD) simulations, followed by binding energy computations. Based on the MM-GBSA binding energy estimations over a 200 ns MD course, three NPAtlas compounds, namely NPA009578, NPA006805, and NPA001884, were identified with better ΔGbinding towards SIRT2 protein than the native ligand (SirReal2) with values of - 59.9, - 57.4, - 53.5, and - 49.7 kcal/mol, respectively. On the basis of structural and energetic assessments, the identified NPAtlas compounds were confirmed to be steady over a 200 ns MD course. The drug-likeness and pharmacokinetic characteristics of the identified NPAtlas molecules were anticipated, and robust bioavailability was predicted. Conclusively, the current results propose potent inhibitors for SIRT2 deserving more in vitro/in vivo investigation.


Asunto(s)
Antineoplásicos , Sirtuina 2 , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Ligandos , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular
7.
Viruses ; 15(1)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36680290

RESUMEN

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues −namely, chetomin A-D− as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/química , Antivirales/uso terapéutico
8.
Molecules ; 27(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630581

RESUMEN

The P-glycoprotein (P-gp/ABCB1) is responsible for a xenobiotic efflux pump that shackles intracellular drug accumulation. Additionally, it is included in the dud of considerable antiviral and anticancer chemotherapies because of the multidrug resistance (MDR) phenomenon. In the search for prospective anticancer drugs that inhibit the ABCB1 transporter, the Natural Product Activity and Species Source (NPASS) database, containing >35,000 molecules, was explored for identifying ABCB1 inhibitors. The performance of AutoDock4.2.6 software to anticipate ABCB1 docking score and pose was first assessed according to available experimental data. The docking scores of the NPASS molecules were predicted against the ABCB1 transporter. Molecular dynamics (MD) simulations were conducted for molecules with docking scores lower than taxol, a reference inhibitor, pursued by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations. On the basis of MM-GBSA calculations, five compounds revealed promising binding affinities as ABCB1 inhibitors with ΔGbinding < −105.0 kcal/mol. The binding affinity and stability of the identified inhibitors were compared to the chemotherapeutic agent. Structural and energetical analyses unveiled great steadiness of the investigated inhibitors within the ABCB1 active site throughout 100 ns MD simulations. Conclusively, these findings point out that NPC104372, NPC475164, NPC2313, NPC197736, and NPC477344 hold guarantees as potential ABCB1 drug candidates and warrant further in vitro/in vivo tests.


Asunto(s)
Antineoplásicos , Productos Biológicos , Antineoplásicos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Productos Biológicos/farmacología , Descubrimiento de Drogas , Estudios Prospectivos
9.
Antibiotics (Basel) ; 10(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438984

RESUMEN

Penicillin-binding proteins (PBPs) catalyze the final stages for peptidoglycan cell-wall bio-synthesis. Mutations in the PBP2a subunit can attenuate ß-lactam antibiotic activity, resulting in unimpeded cell-wall formation and methicillin-resistant Staphylococcus aureus (MRSA). A double mutation in PBP2a (i.e., N146K and E150K) is resistant to ß-lactam inhibitors; however, (E)-3-(2-(4-cyanostyryl)-4-oxoquinazolin-3(4H)-yl) benzoic acid (QNZ), a heterocyclic antibiotic devoid of a ß-lactam ring, interacts non-covalently with PBP2a allosteric site and inhibits PBP enzymatic activity. In the search for novel inhibitors that target this PBP2a allosteric site in acidic medium, an in silico screening was performed. Chemical databases including eMolecules, ChEMBL, and ChEBI were virtually screened for candidate inhibitors with a physicochemical similarity to QNZ. PBP2a binding affinities from the screening were calculated based on molecular docking with co-crystallized ligand QNZ serving as a reference. Molecular minimization calculations were performed for inhibitors with docking scores lower than QNZ (calc. -8.3 kcal/mol) followed by combined MD simulations and MM-GBSA binding energy calculations. Compounds eMol26313223 and eMol26314565 exhibited promising inhibitor activities based on binding affinities (ΔGbinding) that were twice that of QNZ (-38.5, -34.5, and -15.4 kcal/mol, respectively). Structural and energetic analyses over a 50 ns MD simulation revealed high stability for the inhibitors when complexed with the double mutated PBP2a. The pharmacokinetic properties of the two inhibitors were predicted using an in silico ADMET analysis. Calculated binding affinities hold promise for eMol26313223 and eMol26314565 as allosteric inhibitors of PBP2a in acidic medium and establish that further in vitro and in vivo inhibition experimentation is warranted.

10.
Molecules ; 26(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916461

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic, which generated more than 1.82 million deaths in 2020 alone, in addition to 83.8 million infections. Currently, there is no antiviral medication to treat COVID-19. In the search for drug leads, marine-derived metabolites are reported here as prospective SARS-CoV-2 inhibitors. Two hundred and twenty-seven terpene natural products isolated from the biodiverse Red-Sea ecosystem were screened for inhibitor activity against the SARS-CoV-2 main protease (Mpro) using molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area binding energy calculations. On the basis of in silico analyses, six terpenes demonstrated high potency as Mpro inhibitors with ΔGbinding ≤ -40.0 kcal/mol. The stability and binding affinity of the most potent metabolite, erylosides B, were compared to the human immunodeficiency virus protease inhibitor, lopinavir. Erylosides B showed greater binding affinity towards SARS-CoV-2 Mpro than lopinavir over 100 ns with ΔGbinding values of -51.9 vs. -33.6 kcal/mol, respectively. Protein-protein interactions indicate that erylosides B biochemical signaling shares gene components that mediate severe acute respiratory syndrome diseases, including the cytokine- and immune-signaling components BCL2L1, IL2, and PRKC. Pathway enrichment analysis and Boolean network modeling were performed towards a deep dissection and mining of the erylosides B target-function interactions. The current study identifies erylosides B as a promising anti-COVID-19 drug lead that warrants further in vitro and in vivo testing.


Asunto(s)
Invertebrados/química , SARS-CoV-2/metabolismo , Terpenos/química , Proteínas de la Matriz Viral/antagonistas & inhibidores , Animales , Sitios de Unión , COVID-19/virología , Humanos , Enlace de Hidrógeno , Invertebrados/metabolismo , Lopinavir/química , Lopinavir/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , SARS-CoV-2/aislamiento & purificación , Terpenos/aislamiento & purificación , Terpenos/metabolismo , Terpenos/uso terapéutico , Termodinámica , Proteínas de la Matriz Viral/metabolismo , Tratamiento Farmacológico de COVID-19
11.
J Mol Graph Model ; 105: 107904, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798836

RESUMEN

Coronavirus disease 2019 (COVID-19) is a new pandemic characterized by quick spreading and illness of the respiratory system. To date, there is no specific therapy for Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). Flavonoids, especially rutin, have attracted considerable interest as a prospective SARS-CoV-2 main protease (Mpro) inhibitor. In this study, a database containing 2017 flavone analogs was prepared and screened against SARS-CoV-2 Mpro using the molecular docking technique. According to the results, 371 flavone analogs exhibited good potency towards Mpro with docking scores less than -9.0 kcal/mol. Molecular dynamics (MD) simulations, followed by molecular mechanics-generalized Born surface area (MM/GBSA) binding energy calculations, were performed for the top potent analogs in complex with Mpro. Compared to rutin, PubChem-129-716-607 and PubChem-885-071-27 showed better binding affinities against SARS-CoV-2 Mpro over 150 ns MD course with ΔGbinding values of -69.0 and -68.1 kcal/mol, respectively. Structural and energetic analyses demonstrated high stability of the identified analogs inside the SARS-CoV-2 Mpro active site over 150 ns MD simulations. The oral bioavailabilities of probable SARS-CoV-2 Mpro inhibitors were underpinned using drug-likeness parameters. A comparison of the binding affinities demonstrated that the MM/GBSA binding energies of the identified flavone analogs were approximately three and two times less than those of lopinavir and baicalein, respectively. In conclusion, PubChem-129-716-607 and PubChem-885-071-27 are promising anti-COVID-19 drug candidates that warrant further clinical investigations.


Asunto(s)
COVID-19 , Flavonas , Descubrimiento de Drogas , Flavonas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estudios Prospectivos , Inhibidores de Proteasas , Rutina/farmacología , SARS-CoV-2
12.
J Biomol Struct Dyn ; 39(15): 5722-5734, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32643529

RESUMEN

In December 2019, a COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches have been utilized to identify potential natural products (NPs) as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. The MolPort database that contains over 100,000 NPs was screened and filtered using molecular docking techniques. Based on calculated docking scores, the top 5,000 NPs/natural-like products (NLPs) were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined 50 ns MD simulations and MM-GBSA calculations revealed nine potent NLPs with binding affinities (ΔGbinding) > -48.0 kcal/mol. Interestingly, among the identified NLPs, four bis([1,3]dioxolo)pyran-5-carboxamide derivatives showed ΔGbinding > -56.0 kcal/mol, forming essential short hydrogen bonds with HIS163 and GLY143 amino acids via dioxolane oxygen atoms. Structural and energetic analyses over 50 ns MD simulation demonstrated NLP-Mpro complex stability. Drug-likeness predictions revealed the prospects of the identified NLPs as potential drug candidates. The findings are expected to provide a novel contribution to the field of COVID-19 drug discovery.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA