Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 7(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921411

RESUMEN

Green synthesis of nanoparticles (NPs) is a safe, eco-friendly, and relatively inexpensive alternative to conventional routes of NPs production. These methods require natural resources such as cyanobacteria, algae, plants, fungi, lichens, and naturally extracted biomolecules such as pigments, vitamins, polysaccharides, proteins, and enzymes to reduce bulk materials (the target metal salts) into a nanoscale product. Synthesis of nanomaterials (NMs) using lichen extracts is a promising eco-friendly, simple, low-cost biological synthesis process. Lichens are groups of organisms including multiple types of fungi and algae that live in symbiosis. Until now, the fabrication of NPs using lichens has remained largely unexplored, although the role of lichens as natural factories for synthesizing NPs has been reported. Lichens have a potential reducible activity to fabricate different types of NMs, including metal and metal oxide NPs and bimetallic alloys and nanocomposites. These NPs exhibit promising catalytic and antidiabetic, antioxidant, and antimicrobial activities. To the best of our knowledge, this review provides, for the first time, an overview of the main published studies concerning the use of lichen for nanofabrication and the applications of these NMs in different sectors. Moreover, the possible mechanisms of biosynthesis are discussed, together with the various optimization factors influencing the biological synthesis and toxicity of NPs.

2.
Brain Struct Funct ; 225(9): 2643-2668, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32970253

RESUMEN

Several studies suggest that neurons from the lateral region of the SuM (SuML) innervating the dorsal dentate gyrus (DG) display a dual GABAergic and glutamatergic transmission and are specifically activated during paradoxical (REM) sleep (PS). The objective of the present study is to characterize the anatomical, neurochemical and electrophysiological properties of the SuML-DG projection neurons and to determine how they control DG oscillations and neuronal activation during PS and other vigilance states. For this purpose, we combine structural connectivity techniques using neurotropic viral vectors (rabies virus, AAV), neurochemical anatomy (immunohistochemistry, in situ hybridization) and imaging (light, electron and confocal microscopy) with in vitro (patch clamp) and in vivo (LFP, EEG) optogenetic and electrophysiological recordings performed in transgenic VGLUT2-cre male mice. At the cellular level, we show that the SuML-DG neurons co-release GABA and glutamate on dentate granule cells and increase the activity of a subset of DG granule cells. At the network level, we show that activation of the SuML-DG pathway increases theta power and frequency during PS as well as gamma power during PS and waking in the DG. At the behavioral level, we show that the activation of this pathway does not change animal behavior during PS, induces awakening during slow wave sleep and increases motor activity during waking. These results suggest that the SuML-DG pathway is capable of supporting the increase of theta and gamma power in the DG observed during PS and plays an important modulatory role of DG network activity during this state.


Asunto(s)
Giro Dentado/fisiología , Neuronas GABAérgicas/fisiología , Rayos gamma , Ácido Glutámico/fisiología , Hipotálamo Posterior/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Ritmo Teta , Animales , Giro Dentado/citología , Neuronas GABAérgicas/citología , Hipotálamo Posterior/citología , Masculino , Potenciales de la Membrana , Ratones Transgénicos , Neuronas/citología
3.
Int J Nanomedicine ; 15: 49-63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021164

RESUMEN

BACKGROUND: The emergence of multi drug-resistant (MDR) bacterial infections and cancer has necessitated the development and discovery of alternative eco-safe antibacterial and anticancer agents. Biogenic fabrication of metallic nanoparticles is an emerging discipline for production of nanoproducts that exert potent anticancer and antibacterial activity, and do not suffer from the limitations inherent in physiochemical synthesis methods. METHODOLOGY: In this study, we isolated, purified, and characterized a novel cyanobacteria extract (Desertifilum IPPAS B-1220) to utilize in biofabrication of silver nanoparticles (D-SNPs). D-SNPs were produced by adding Desertifilum extract to silver nitrate solution under controlled conditions. Biofabrication of D-SNPs was confirmed using a UV-Vis spectrophotometer. The resultant D-SNPs were characterized using XRD, FTIR, SEM, and TEM. The toxicity of D-SNPs against five pathogenic bacteria and three cancer cell lines (MCF-7, HepG2, and Caco-2) was evaluated. RESULTS: Formation of D-SNPs was indicated by a color change from pale yellow to dark brown. The peak of the surface plasmon resonance of the D-SNPs was at 421 nm. The XRD detected the crystallinity of D-SNPs. FTIR showed that polysaccharides and proteins may have contributed to the biofabrication of D-SNPs. Under SEM and TEM, the D-SNPs were spherical with diameter ranges from 4.5 to 26 nm. The D-SNPs significantly suppressed the growth of five pathogenic bacteria, and exerted cytotoxic effects against MCF-7, HepG2, and Caco-2 cancer cells with IC50 values of 58, 32, and 90 µg/mL, respectively. CONCLUSION: These findings showed for the first time the potentiality of novel cyanobacteria strain Desertifilum IPPAS B-1220 to fabricate small SNPs that acted as potent anticancer and antibacterial material against different cancer cell lines and pathogenic bacterial strains. These findings encourage the researchers to focus on cyanobacteria in general and especially Desertifilum sp. IPPAS B-1220 for synthesizing different NPs that opening the window for new applications.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Cianobacterias/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/química , Antineoplásicos/química , Células CACO-2 , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Células Hep G2 , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Nitrato de Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...