Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e22056, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027817

RESUMEN

Bisphenol-A (BPA) is a synthetic chemical compound broadly used in the plastic and epoxy resin industries with a considerable potential for food contamination. Literary reports have suggested that the altered renin-angiotensin system (RAS) is a mechanism for lung injury and inflammation caused by variable agents. The current study sought to investigate the contribution of RAS to BPA-induced lung damage. Moreover, the study assessed whether angiotensin II and/or bradykinin pathways were involved. For this aim, the angiotensin-converting enzyme (ACE) inhibitor captopril (Cap), either alone or combined with bradykinin receptor antagonist icatibant (Icat), was attempted versus the angiotensin receptor blocker losartan (Los). An eight-week study was conducted on forty Wistar male albino rats randomly divided into five equal groups: control, BPA, BPA/Cap, BPA/Los, and BPA/Cap/Icat groups. Captopril (100 mg/mL) and losartan (200 mg/mL) were given orally in drinking water, but icatibant (Icat) was injected subcutaneously (250 µg/kg) during the last two weeks of captopril treatment. Biochemical analysis of bronchoalveolar lavage fluid (BALF) and lung tissues, polymerase chain reaction (PCR) assay for ACE, ACE2, and caspase-3 genes expression, and histological and immunohistochemical studies were carried out to evaluate BPA-mediated pulmonary inflammation/apoptosis. BPA impaired the histological structure of the lungs, increased ACE, ACE2, and caspase-3 expressions at both gene/protein levels, and increased BALF inflammatory cytokines and lung oxidative markers. Inhibiting the ACE activity by captopril maintained the histological lung injury score, restored inflammation and the ACE2/ACE balance, and decreased apoptosis. Further improvement was obtained by the angiotensin II receptor (ATR1) blocker losartan. Icatibant (bradykinin B2 receptor blocker) didn't counteract the observed captopril effects. It was strongly suggested that RAS contributed to BPA-induced lung damage via alteration of ACE2 and ACE expression mediating angiotensin II generation rather than bradykinin.

2.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 109-117, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715411

RESUMEN

The effect of bisphenol-A (BPA) on Klotho protein (aging-suppressing protein) expression in different body organs has not been sufficiently addressed by literature studies. The study investigated the impact of BPA on Klotho expression in multiple organs including the liver, kidney, and pancreas and suggested the involved molecular pathways. Twenty-seven male Wistar albino rats were divided into 3 equal groups: control, low-dose BPA (4.5 µg/L), and high-dose BPA (8 µg/L) groups in drinking water for 45 consecutive days. Liver, kidney, and pancreatic specimens were prepared for a gene study of Klotho, HSP60, mTOR, and ULK1 mRNA expressions. Also, the tissue specimens were measured for malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) levels. Paraffin-embedded sections were also prepared and subjected to Hematoxylin and Eosin (H&E) staining and immunohistochemical detection of Klotho and HSP60. The results revealed an alteration in the MDA, SOD, NO tissue levels, disturbed gene expression profile, and apoptotic changes in the histological findings of the examined organs which were obvious (p < 0.05) in the high-dose group. The anti-aging Klotho gene/protein expression was reduced (p < 0.05) more in the high-dose BPA group than in the low dose. In contrast, HSP60 gene/protein expression was significantly increased (p < 0.05) more in the high dose. It was concluded that BPA exposure contributed to cell stress and markedly reduced Klotho protein expression in liver, kidney, and pancreatic tissues, possibly by modulation of the HSP60-activated mTOR/autophagy signaling.


Asunto(s)
Riñón , Hígado , Masculino , Ratas , Animales , Páncreas , Serina-Treonina Quinasas TOR/genética , Autofagia , Óxido Nítrico
3.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048067

RESUMEN

Although the classic form of asthma is characterized by chronic pneumonitis with eosinophil infiltration and steroid responsivity, asthma has multifactorial pathogenesis and various clinical phenotypes. Previous studies strongly suggested that chemical exposure could influence the severity and course of asthma and reduce its steroid responsiveness. Cypermethrin (CYP), a common pesticide used in agriculture, was investigated for the possible aggravation of the ovalbumin (OVA)-induced allergic pneumonitis and the possible induction of steroid resistance in rats. Additionally, it was investigated whether pirfenidone (PFD) could substitute dexamethasone, as an alternative treatment option, for the induced steroid resistance. Fifty-six male Wistar albino rats were randomly divided into seven groups: control, PFD alone, allergic pneumonitis, CYP alone, allergic pneumonitis/CYP-exposed, allergic pneumonitis/CYP/dexamethasone (Dex), and allergic pneumonitis/CYP/PFD-treated groups. Allergic pneumonitis was induced by three intraperitoneal OVA injections administered once a week, followed by an intranasal OVA instillation challenge. CYP (25 mg/kg/d), Dex (1 mg/kg/d), and PFD (100 mg/kg/d) were administered orally from day 15 to the end of the experiment. Bronchoalveolar lavage fluid (BALF) was analyzed for cytokine levels. Hematoxylin and eosin (H&E) and periodic acid Schiff (PAS)-stained lung sections were prepared. Immunohistochemical identification of p38 MAPK and lung macrophages was performed. The inflammatory/oxidative status of the lung and PCR-quantification of the STAT6, p38 MAPK, MUC5AC, and IL-13 genes were carried out. The allergic pneumonitis-only group showed eosinophil-mediated inflammation (p < 0.05). Further CYP exposure aggravated lung inflammation and showed steroid-resistant changes, p38 activation, neutrophil-mediated, M1 macrophage-related inflammation (p < 0.05). All changes were reversed (p < 0.05) by PFD, meanwhile not by dexamethasone treatment. Pirfenidone could replace dexamethasone treatment in the current rat model of CYP-induced severe steroid-resistant asthma via inhibiting the M1 macrophage differentiation through modulation of the STAT6/p38 MAPK pathway.


Asunto(s)
Alveolitis Alérgica Extrínseca , Asma , Neumonía , Animales , Ratas , Masculino , Ovalbúmina/efectos adversos , Ratas Wistar , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/genética , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Inflamación , Macrófagos/metabolismo , Dexametasona/efectos adversos , Fenotipo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
4.
Cell Biol Int ; 46(12): 2232-2245, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36168861

RESUMEN

Unfortunately, humanity is exposed to mixed plasticizers such as bisphenol-A (BPA) and dibutyl phthalate (DBP) that are leached from the daily used plastic products. Previous studies have demonstrated their potential in pancreatic beta cell injury and diabetes induction. The study hypothesized that both compounds would affect the pancreatic alpha cells in albino rats when administered at environmentally relevant doses. Heat shock protein 60 (HSP60) and caspase-3 protein expression was also investigated as potential mechanisms. Thirty-six male Wistar albino rats were separated into four equal groups: control, BPA alone, DBP alone, and BPA + DBP combined groups. BPA and DBP were given in drinking water for 45 days in a dose of 4.5 and 0.8 µg/L, respectively. Fasting blood glucose, serum insulin, pancreatic tissue levels of malondialdehyde, and superoxide dismutase were measured. Pancreatic sections were subjected to hematoxylin & eosin (H & E) staining, glucagon, HSP60, and caspase-3 immunohistochemistry. Although all three experimental groups showed diffuse islet cell HSP60 immunoreactivity, rats exposed to BPA alone showed α-cell-only apoptosis, indicated by H & E changes and caspase-3 immunoreactivity, associated with reduced glucagon immunoreaction. However, rats exposed to DBP alone showed no changes in either α or ß-cells. Both combined-exposed animals displayed α and ß apoptotic changes associated with islet atrophy and reduced glucagon expression. In conclusion, the study suggested HSP60/caspase-3 interaction, caspase-3 activation, and initiation of apoptosis in α-cell only for BPA-alone exposure group, meanwhile DBP alone did not progress to apoptosis. Interestingly, both α/ß cell effect was observed in the mixed group implying synergetic/additive action of both chemicals when combined.


Asunto(s)
Dibutil Ftalato , Células Secretoras de Glucagón , Animales , Ratas , Masculino , Dibutil Ftalato/toxicidad , Caspasa 3/metabolismo , Chaperonina 60 , Glucagón , Ratas Wistar , Compuestos de Bencidrilo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...