Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 994480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248843

RESUMEN

Macrophages are key regulators of inflammation and repair, but their heterogeneity and multiple roles in the liver are not fully understood. We aimed herein to map the intrahepatic macrophage populations and their function(s) during acute liver injury. We used flow cytometry, gene expression analysis, multiplex-immunofluorescence, 3D-reconstruction, and spatial image analysis to characterize the intrahepatic immune landscape in mice post-CCl4-induced acute liver injury during three distinct phases: necroinflammation, and early and late repair. We observed hepatocellular necrosis and a reduction in liver resident lymphocytes during necroinflammation accompanied by the infiltration of circulating myeloid cells and upregulation of inflammatory cytokines. These parameters returned to baseline levels during the repair phase while pro-repair chemokines were upregulated. We identified resident CLEC4F+ Kupffer cells (KCs) and infiltrating IBA1+CLEC4F- monocyte-derived macrophages (MoMFs) as the main hepatic macrophage populations during this response to injury. While occupying most of the necrotic area, KCs and MoMFs exhibited distinctive kinetics, distribution and morphology at the site of injury. The necroinflammation phase was characterized by low levels of KCs and a remarkable invasion of MoMFs suggesting their potential role in phagoctosing necrotic hepatocytes, while opposite kinetics/distribution were observed during repair. During the early repair phase, yolksac - derived KCs were restored, whereas MoMFs diminished gradually then dissipated during late repair. MoMFs interacted with hepatic stellate cells during the necroinflammatory and early repair phases, potentially modulating their activation state and influencing their fibrogenic and pro-repair functions that are critical for wound healing. Altogether, our study reveals novel and distinct spatial and temporal distribution of KCs and MoMFs and provides insights into their complementary roles during acute liver injury.


Asunto(s)
Macrófagos del Hígado , Hígado , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Hígado/lesiones , Hígado/metabolismo , Macrófagos , Ratones
2.
Cell Mol Gastroenterol Hepatol ; 14(6): 1269-1294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35970323

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major health problem with complex pathogenesis. Although sex differences in NAFLD pathogenesis have been reported, the mechanisms underlying such differences remain understudied. Interleukin (IL)22 is a pleiotropic cytokine with both protective and/or pathogenic effects during liver injury. IL22 was shown to be hepatoprotective in NAFLD-related liver injury. However, these studies relied primarily on exogenous administration of IL22 and did not examine the sex-dependent effect of IL22. Here, we sought to characterize the role of endogenous IL22-receptor signaling during NAFLD-induced liver injury in males and females. METHODS: We used immunofluorescence, flow cytometry, histopathologic assessment, and gene expression analysis to examine IL22 production and characterize the intrahepatic immune landscape in human subjects with NAFLD (n = 20; 11 men and 9 women) and in an in vivo Western high-fat diet-induced NAFLD model in IL22RA knock out mice and their wild-type littermates. RESULTS: Examination of publicly available data sets from 2 cohorts with NAFLD showed increased hepatic IL22 gene expression in females compared with males. Furthermore, our immunofluorescence analysis of liver sections from NAFLD subjects (n = 20) showed increased infiltration of IL22-producing cells in females. Similarly, IL22-producing cells were increased in wild-type female mice with NAFLD and the hepatic IL22/IL22 binding protein messenger RNA ratio correlated with expression of anti-apoptosis genes. The lack of endogenous IL22-receptor signaling (IL22RA knockout) led to exacerbated liver damage, inflammation, apoptosis, and liver fibrosis in female, but not male, mice with NAFLD. CONCLUSIONS: Our data suggest a sex-dependent hepatoprotective antiapoptotic effect of IL22-receptor signaling during NAFLD-related liver injury in females.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Femenino , Humanos , Masculino , Ratones , Animales , Receptores de Interleucina/genética , Transducción de Señal , Cirrosis Hepática , Ratones Noqueados
5.
J Vis Exp ; (157)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32281982

RESUMEN

The immune landscape of the tumor microenvironment (TME) is a determining factor in cancer progression and response to therapy. Specifically, the density and the location of immune cells in the TME have important diagnostic and prognostic values. Multiomic profiling of the TME has exponentially increased our understanding of the numerous cellular and molecular networks regulating tumor initiation and progression. However, these techniques do not provide information about the spatial organization of cells or cell-cell interactions. Affordable, accessible, and easy to execute multiplexing techniques that allow spatial resolution of immune cells in tissue sections are needed to complement single cell-based high-throughput technologies. Here, we describe a strategy that integrates serial imaging, sequential labeling, and image alignment to generate virtual multiparameter slides of whole tissue sections. Virtual slides are subsequently analyzed in an automated fashion using user-defined protocols that enable identification, quantification, and mapping of cell populations of interest. The image analysis is done, in this case using the analysis modules Tissuealign, Author, and HISTOmap. We present an example where we applied this strategy successfully to one clinical specimen, maximizing the information that can be obtained from limited tissue samples and providing an unbiased view of the TME in the entire tissue section.


Asunto(s)
Leucocitos/patología , Microambiente Tumoral/inmunología , Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Automatización , Calor , Humanos , Procesamiento de Imagen Asistido por Computador , Adhesión en Parafina , Coloración y Etiquetado , Células del Estroma/metabolismo , Fijación del Tejido
6.
Cytokine ; 124: 154497, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30097286

RESUMEN

The type 3 cytokines IL-17 and IL-22 play a crucial, well synchronized physiological role in wound healing and repairing tissue damage due to infections or injury at barrier surfaces. These cytokines act on epithelial cells to induce secretion of early immune mediators, recruitment of inflammatory cells to the site of injury, and to trigger tissue repair mechanisms. However, if the damage persists or if these cytokines are dysregulated, then they contribute to a number of inflammatory pathologies, autoimmune conditions and cancer. The liver is a multifunctional organ that plays an essential role in metabolism, detoxification, and immune surveillance. It is also exposed to a variety of pathogens, toxins and injuries. Over the past decade, IL-17 and IL-22 have been implicated in various aspects of liver inflammation. IL-17 is upregulated in chronic liver injury and associated with liver disease progression. In contrast, IL-22 was shown to be hepatoprotective during acute liver injury but exhibited inflammatory effects in other models. Furthermore, IL-22 and IL-17 are both associated with poor prognosis in liver cancer. Finally, the regulatory mechanisms governing the physiological versus the pathological role of these two cytokines during acute and chronic liver injury remain poorly understood. In this review, we will summarize the current state of knowledge about IL-17 and IL-22 in wound healing during acute and chronic liver injury, their contribution to pathogenesis, their regulation, and their role in the transition from advanced liver disease to liver cancer.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Interleucina-17/metabolismo , Interleucinas/metabolismo , Cirrosis Hepática/inmunología , Neoplasias Hepáticas/inmunología , Animales , Carcinoma Hepatocelular/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/microbiología , Enfermedad Hepática Inducida por Sustancias y Drogas/virología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/microbiología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/virología , Humanos , Inmunidad Innata , Neoplasias Hepáticas/patología , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...