Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Reprod Sci ; 264: 107472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598888

RESUMEN

Although cryopreservation is a reliable method used in assisted reproduction to preserve genetic materials, it can stimulate the occurrence of oxidative stress, which affects sperm structure and function. This research was conducted to explore the effects of quinoa seed extracts (QSE) on ram sperm quality, oxidative biomarkers, and the gene expression of frozen-thawed ram sperm. Semen samples were diluted in extenders supplemented with 0 (QSE0), 250 (QSE1), 500 (QSE2), 750 (QSE3), and 1000 (QSE4) µg of QSE /mL, and then frozen according to the typical procedure. The findings indicate that the QSE3 and QSE4 groups provided the optimal results in terms of sperm viability and progressive motility. Sperm kinematics were considerably enhanced in the QSE3 group compared to the other groups (P<0.01). QSE (500-1000 µg/mL) significantly decreased the apoptosis-like changes (higher viable and lower apoptotic sperm) in ram sperm (P<0.001). The percentage of live sperm with intact acrosomes was significantly increased, while the percentage of detached and intact acrosomes in live and dead sperm were significantly decreased respectively by the QSE addition (P<0.001). All QSE groups had higher TAC and lower MDA and H2O2 levels than the control group (P<0.001). The expressions of SOD1, CAT, GABPB1, and GPX1 genes in sperm samples were significantly increased, while the CASP3 gene was significantly decreased in all QSE-supplemented samples. Our data suggest that QSE has beneficial effects on sperm quality of cryopreserved ram semen, which are achieved by promoting sperm antioxidant-related genes and reducing apoptosis-related gene.


Asunto(s)
Chenopodium quinoa , Criopreservación , Extractos Vegetales , Semillas , Análisis de Semen , Preservación de Semen , Espermatozoides , Masculino , Criopreservación/veterinaria , Criopreservación/métodos , Animales , Ovinos/fisiología , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Semillas/química , Análisis de Semen/veterinaria , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Extractos Vegetales/farmacología , Chenopodium quinoa/química
2.
Mol Biotechnol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528286

RESUMEN

There is increasing evidence indicating that global temperatures are rising significantly, a phenomenon commonly referred to as 'global warming', which in turn is believed to be causing drastic changes to the global climate. Global warming (GW) directly impacts animal health, reproduction, production, and welfare, presenting several challenges to livestock enterprises. Thermal stress (TS) is one of the key consequences of GW, and all animal species, including livestock, have diverse physiological, epigenetic and genetic mechanisms to respond to TS. As a result, TS can significantly affect an animals' health, immune responsiveness, metabolic pathways etc. which can also influence the productivity, performance, and welfare of animals. Moreover, prolonged exposure to TS can lead to transgenerational and intergenerational changes that are mediated by epigenetic changes. For example, in several animal species, the effects of TS are encoded epigenetically during the animals' growth or productive stage, and these epigenetic changes can be transmitted intergenerationally. Such epigenetic changes can affect animal productivity by changing the phenotype so that it aligns with its ancestors' environment, irrespective of its immediate environment. Furthermore, epigenetic and genetic changes can also help protect cells from the adverse effects of TS by modulating the transcriptional status of heat-responsive genes in animals. This review focuses on the genetic and epigenetic modulation and regulation that occurs in TS conditions via HSPs, histone alterations and DNA methylation.

3.
Environ Res ; 252(Pt 1): 118799, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38552831

RESUMEN

Epigenetics plays a vital role in the interaction between living organisms and their environment by regulating biological functions and phenotypic plasticity. Considering that most aquaculture activities take place in open or natural habitats that are vulnerable to environmental changes. Promising findings from recent research conducted on various aquaculture species have provided preliminary evidence suggesting a link between epigenetic mechanisms and economically valuable characteristics. Environmental stressors, including climate changes (thermal stress, hypoxia, and water salinity), anthropogenic impacts such as (pesticides, crude oil pollution, nutritional impacts, and heavy metal) and abiotic factors (infectious diseases), can directly trigger epigenetic modifications in fish. While experiments have confirmed that many epigenetic alterations caused by environmental factors have plastic responses, some can be permanently integrated into the genome through genetic integration and promoting rapid transgenerational adaptation in fish. These environmental factors might cause irregular DNA methylation patterns in genes related to many biological events leading to organs dysfunction by inducing alterations in genes related to oxidative stress or apoptosis. Moreover, these environmental issues alter DNA/histone methylation leading to decreased reproductive competence. This review emphasizes the importance of understanding the effects of environmentally relevant issues on the epigenetic regulation of phenotypic variations in fish. The goal is to expand our knowledge of how epigenetics can either facilitate or hinder species' adaptation to these adverse conditions. Furthermore, this review outlines the areas that warrant further investigation in understanding epigenetic reactions to various environmental issues.

4.
Anim Reprod Sci ; 263: 107429, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382197

RESUMEN

Sperm cryopreservation technology significantly contributes to the safeguarding of genetic resources, particularly for endangered species, and supports the use of artificial insemination in domestic animals. Therefore, cryopreservation can negatively affect sperm health and function leading to reduce the freezing ability and fertility potential. Therefore, it is essential to prioritize the improvement of cryotolerance in cryopreserved sperm to enhance reproductive efficiency and ensure sustainability in livestock herds. The main reason for sperm dysfunction after thawing may be related to the excessive amount of oxidative stress (OS) produced during cryopreservation. Scientists have different ways for counteracting this OS including the use of plant extracts, enzymes, minerals, anti-freezing proteins, and amino acids. Recently, one such amino acid is L-proline (LP), which has multiple roles such as osmotic and OS defense, nitrogen, and carbon metabolism, as well as cell survival and signaling. LP has been found in seminal plasma and has recently been added to the freezing extender to improve the various post-thaw parameters of sperm. This improvement is related to the ability of LP to reduce the OS, sustain the plasma membrane and to act as an osmoregulatory agent. Moreover, LP can suppress cell apoptosis by modulating intracellular redox in sperm. This review addresses the ongoing research on the addition of L-proline as an osmoregulatory agent in freezing extenders to increase the cryotolerance of animal spermatozoa to freeze-thaw.


Asunto(s)
Preservación de Semen , Semen , Masculino , Animales , Prolina/farmacología , Preservación de Semen/veterinaria , Espermatozoides , Criopreservación/veterinaria , Aminoácidos , Motilidad Espermática , Crioprotectores/farmacología
5.
Reprod Domest Anim ; 59(1): e14511, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018440

RESUMEN

The current study aimed to investigate the impact of nano-formulations of clove bud ethanolic extract (CBENF) in the extender on sperm characteristics, antioxidant capacity, oxidative biomarkers, enzymatic activity, apoptosis and fertility of post-thawed rabbit semen. Twelve mature male rabbits semen samples were pooled and cryopreserved in a Tris-egg yolk-based extender containing varying concentrations of CBENF (0, 25, 50, 75 and 100 µg/mL). After the equilibration and freezing-thawing process, CBENF (100 µg /mL) significantly enhanced progressive motility, viability and membrane integrity. Conversely, sperm abnormality was significantly reduced by CBENF supplementation. Total antioxidant capacity was increased in the post-thawed sperm medium, while nitric oxide and malondialdehyde were decreased in all CBENF concentrations. The lactic dehydrogenase and caspase-3 activities were decreased, whereas the number of live spermatozoa with an intact acrosome was increased in all CBENF concentrations. Conception rate and litter size per doe were higher in doe rabbits inseminated with semen supplemented with 100 µg CBENF/mL than un-supplemented group (76% vs. 52% and 8.4 vs. 7.7/doe), with no statistical differences. These findings suggest that supplementing rabbit extenders with 100 µg of CBENF/mL could be an effective strategy for enhancing freeze-thawing rabbit sperm attributes and fertility.


Asunto(s)
Preservación de Semen , Syzygium , Masculino , Conejos , Animales , Congelación , Antioxidantes/farmacología , Caspasa 3 , Reacción Acrosómica , Crioprotectores , Motilidad Espermática , Semillas , Espermatozoides , Criopreservación/veterinaria , Fertilidad , Preservación de Semen/veterinaria
6.
Poult Sci ; 103(1): 103218, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37980733

RESUMEN

Heat stress (HS) is still the essential environmental agent influencing the poultry industry. Research on HS in poultry has progressively acquired growing interest because of increased attention to climate alteration. Poultry can survive at certain zone of environmental temperatures, so it could be considered homoeothermic. In poultry, the normal body temperature is essential to enhance the internal environment for growth, which is achieved by normal environmental temperature. Recently, many studies have revealed that HS could cause mitochondrial dysfunction in broilers by inducing redox dysfunction, increasing uncoupling protein, boosting lipid and protein oxidation, and oxidative stress. Moreover, HS diminished the energy suppliers supported by mitochondria activity. A novel strategy for combating the negative influences of HS via boosting the mitochondria function through enrichment of the diets with mitochondria enhancers was also described in this review. Finally, the current review highlights the mitochondria dysfunction induced by HS in broilers and attempts to boost mitochondria functionality by enriching mitochondria enhancers to broiler diets.


Asunto(s)
Pollos , Aves de Corral , Animales , Estrés Oxidativo , Respuesta al Choque Térmico , Mitocondrias/metabolismo
7.
Biol Trace Elem Res ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37964041

RESUMEN

Heat stress (HS) is one of the most significant environmental factors that result in fluctuations and shrinkage in rabbit growth, health, and overall productivity. This study aims to investigate the effects of dietary mineral nanoparticles (selenium or zinc) and/or Spirulina platensis (SP) independently and in combination on stressed growing rabbits. A total of 180 weaned growing New Zealand White rabbits were included in this study and randomly divided into six dietary treatments. Rabbits received a basal diet (control group; CON group) or fortified with SP (1 g/kg diet), selenium nanoparticles (SeNPs, 50 mg/kg diet), zinc nanoparticles (ZnNPs, 100 mg/kg diet), and a mixture of SP and SeNPs (SPSeNPs) or SP and ZnNPs (SPZnNPs) groups for 8 weeks during summer conditions. The obtained results demonstrated a significant increase in the final body weight and weight gain (p < 0.05). Additionally, the feed conversion ratio was improved during the periods from 6 to 14 weeks in the treated rabbits compared to those in the CON group. Dietary supplements considerably improved (p < 0.05) the blood hematology (WBCs, Hb, RBCs, and Hct) and some carcass traits (liver weights and edible giblets). All dietary supplements significantly decreased serum levels of total glycerides (p < 0.0001), AST (p = 0.0113), ALT (p = 0.0013), creatinine (p = 0.0009), and uric acid (p = 0.0035) compared to the CON group. All treated groups (except ZnNPs) had lower values of total bilirubin and indirect bilirubin in a dose-dependent way when compared to the CON group. The values of IgA, IgG, and superoxide dismutase were significantly improved (p < 0.05) in all treated rabbits compared to the CON group. Compared with the CON group, the levels of T3 (p < 0.05) were significantly increased in all treated growing rabbits (except for the ZnNP group), while the serum cortisol, interferon-gamma (IFN-γ), malondialdehyde, and protein carbonyl were significantly decreased in the treated groups (p < 0.05). Dietary supplements sustained the changes in hepatic, renal, and cardiac impairments induced by HS in growing rabbits. Adding SP (1 g/kg diet) or SeNPs (50 mg/kg diet) in the diet, either individually or in combination, improved growth performance, blood picture, and immunity-antioxidant responses in stressed rabbits. Overall, these feed additives (SP, SeNPs, or their mixture) can be applied as an effective nutritional tool to reduce negative impacts of summer stress conditions, thereby maintaining the health status and improving the heat tolerance in growing rabbits.

8.
Reprod Domest Anim ; 58(12): 1639-1653, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786951

RESUMEN

Sperm preservation is a well-established technique in reproductive biotechnology that is widely used to maintain the genetic quality of male individuals. However, there are several factors during the preservation process that can affect the vitality, functionality, and quality of sperm, thereby reducing their fertility potential after thawing. One of these factors is the synthesis of high levels of oxidative stress (OS) during semen preservation, which can have detrimental effects on sperm health and functionality. To counter the negative impact of OS on sperm, researchers have explored the supplementation of several exogenous antioxidants in the extenders used to preserve ram sperm. This approach has shown promising results in improving sperm health, functionality, and fertility potential in ram. Additionally, the preservation process can induce modifications in the ram sperm proteome. By employing targeted proteomics techniques, researchers have been able to identify and modify specific proteins in cryopreserved ram sperm, potentially offering further improvements in the quality of the cryopreserved ram sperm. In summary, this review provides a comprehensive overview of the antioxidants and targeted proteomics modifications that have been investigated for enhancing ram sperm preservation. These advancements aim to mitigate the negative effects of OS and optimize the techniques used in preserving ram sperm.


Asunto(s)
Antioxidantes , Preservación de Semen , Masculino , Animales , Ovinos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Semen/metabolismo , Proteómica , Motilidad Espermática , Espermatozoides/metabolismo , Criopreservación/veterinaria , Criopreservación/métodos , Crioprotectores/farmacología
9.
Animals (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37889670

RESUMEN

With the recent trend of global warming, HS-instigated diminishing could extremely jeopardize animal health, productivity, and farm profit. Marjoram essential oil (MEOE) is a worthy source of wide range phytogenic compounds that may improve heat tolerance, redox and inflammatory homeostasis, and immunity of newly weaned rabbits, specifically if included in the diets in a nano form. One hundred newly weaned rabbits were randomly distributed into four homogeneous groups. The first group (control group) included rabbits that received basal diet without supplementation. In contrast, the other three groups included rabbits that received basal diets supplemented with 200 (MEONE200), 400 (MEONE400), and 800 (MEONE800) mg MEONE/kg diet, respectively. Among MEONE-treated groups and control groups, MEONE400 group showed the highest (p < 0.001) growth performance traits, including final body weight, average daily gain, feed efficiency, and the performance index. Compared to the control, all MEONE-supplemented groups possessed lower rectal temperatures and respiration rates, recording the lowest values in the MEONE400 group. The oxidative stress biomarkers and immunoglobulins G and M were significantly improved in the MEONE400 and MEONE800 compared with the control and MEONE200 groups. The addition of MEONE (400 or 800 mg/kg) decreased the concentrations of serum interleukin-4 (p = 0.0003), interferon gamma (p = 0.0004), and tumor necrosis factor-α (p < 0.0001) but significantly elevated (p < 0.001) the activity of nitric oxide, amyloid A and lysozyme. Liver functions (lower concentrations of liver enzymes) were significantly improved in all MEONE-treated groups compared to the control group. There was a considerable significant effect of dietary supplementation of MEONE400 on economic efficiency. In conclusion, the addition of 400 mg/kg to the diets of newly weaned rabbits can be recommended as an affective intervention to mitigate the negative impacts of HS.

10.
Animals (Basel) ; 13(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37760374

RESUMEN

Thymoquinone nanoparticles (TQNPs) are broadly utilized in numerous pharmaceutical applications. In the present study, we tested the effects of TQNP supplementation on sperm quality and kinematics, acrosome exocytosis, oxidative biomarkers, apoptosis-like and morphological changes of frozen-thawed buffalo sperm, as well as the fertilizing capacity. Semen was collected from buffalo bulls, diluted (1:10; semen/extender), and divided into five aliquots comprising various concentrations of TQNP 0 (CON), 12.5 (TQNP12.5), 25 (TQNP25), 37.5 (TQNP37.5), and 50 (TQNP50) µg/mL, and then cryopreserved and stored in liquid nitrogen (-196 °C). The results revealed that TQNPs (25 to 50 µg/mL) provided the most optimal results in terms of membrane integrity (p < 0.001) and progressive motility (p < 0.01). In contrast, TQNP50 resulted in a greater post-thawed sperm viability (p = 0.02) compared with other groups. The addition of TQNPs to the extender had no discernible effects on sperm morphology measures. Sperm kinematic motion was significantly improved in the TQNP50 group compared to the control group (p < 0.01). TQNPs effectively reduced the content of H2O2 and MDA levels and improved the total antioxidant capacity of post-thawed extended semen (p < 0.01). The addition of TQNP significantly increased the number of intact acrosomes (p < 0.0001) and decreased the number of exocytosed acrosomes (p < 0.0001). A significant reduction in apoptosis-like changes was observed in TQNP groups. The non-return rates of buffalo cows inseminated with TQNP50-treated spermatozoa were higher than those in the control group (p < 0.05; 88% vs. 72%). These findings suggested that the freezing extender supplemented with TQNPs could effectively enhance the cryotolerance and fertility of buffalo sperm.

11.
Animals (Basel) ; 13(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37760390

RESUMEN

Recently, nanotechnology approaches have been employed to enhance the solubility, availability, and efficacy of phytochemicals, overcoming some industrial obstacles and natural biological barriers. In this regard, 120 clinically healthy growing V-line rabbits (5 weeks old) reared during the summer season were divided randomly into four equal experimental groups (30 rabbits each). The first group received a basal diet without the supplementation of the nanoemulsion of cardamom essential oil (NCEO) (0 g/kg diet) and served as a control (NCEO 0). The other groups were given diets containing NCEO at levels of 150 (NCEO 150), 300 (NCEO 300), and 600 (NCEO 600) mg/kg diet, respectively. The growth performance (higher LBW and ADG), feed utilization (lower FCR), dressing percentage, and relative weight of the liver were improved significantly in the NCEO-treated groups compared to the control group. Moreover, the dietary treatment significantly decreased the rectum temperature and respiration rate, minimizing the 350 and 325 mg NECO/kg diets. The erythrocyte count, hematocrit, and hemoglobin concentration were significantly increased (p < 0.05), while white blood cells were significantly diminished (p = 0.0200) in the NCEO300 and NCEO600 groups compared to the control group. Treatment with 300 or 600 mg NCEO/kg significantly increased the blood serum total protein and albumin compared to the control group. Meanwhile, the liver enzymes (AST and ALT), uric acid, and creatinine concentrations decreased significantly in the NCEO300 group compared to the control group. The concentrations of triglycerides and total cholesterol were reduced significantly by the dietary treatment. The total antioxidant capacity, dismutase activity, and glutathione concentration were significantly higher, while the malondialdehyde and protein carbonyl levels were significantly lower in the NCEO300 group than in the control. The inflammatory responses and immunity statuses were improved in the blood serum of the NCEO-treated rabbits compared to the control. Heat-stress-induced pathological perturbations in renal/hepatic tissues and NCEO co-treatment successfully re-established and recovered near-control renal-hepatic morphology. In conclusion, a dietary supplementation of NCEO (300 mg/kg) could effectively enhance growing rabbits' growth indices, feed efficiency, redox balance, immunity, and inflammatory responses during the summer.

12.
Theriogenology ; 212: 9-18, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37672891

RESUMEN

The existing treatise targeted to compare the effects of adding different nano-emulsions essential oils (olive, flaxseed, and grapeseed oils) in freezing extender on semen quality and freezability in buffalo. Nano-emulsions were prepared from olive, flaxseed, and grapeseed oils and characterized for their sizes and shapes. Semen extended in four tubes were supplemented with 0 (control) and 3.5% nanoemulsion oils, including olive (NEO), flaxseed (NEFO) and grape seed oils (NEGSO) respectively. NEGSO resulted in the highest (p < 0.05) membrane integrity, vitality, progressive motility (P-motility) of sperm compared to the other groups in post-thawed buffalo bull semen (at 37 °C for 30 s). The addition of NEGSO had the best results for membrane integrity, progressive motility, and vitality of sperm after incubation (at 37 °C and 5% CO2 for 2 h). A superior (p < 0.05) value of total antioxidant capacity in frozen-thawed spermatozoa was monitored in all supplemented groups as relative to the control. The values of malondialdehyde (MDA) and nitric oxide (NO) were lower (p < 0.05) in NEGSO group compared with other groups. Both NEO and NEFO exhibited the same results for MDA, and NO levels (p > 0.05). All supplemented groups exhibited lower hydrogen peroxide levels (p < 0.05) as relative to the un-treated group. The lowest (p < 0.05) caspase 3 levels were verified in NEGSO treatment, followed by NEFO and NEO treatments. Post-thawed sperm showed ultrastructural damages in the control group, and theses damages were attenuated or resorted by the NEGSO, NEFO and NEO supplemented to freezing extender. In consequences with in vitro results regarding the sperm attribute, a greater pregnancy rate (92%) was observed in NEGSO group as compared with NEFO (88%), NEO (76%) and CON (68%) groups. Our findings demonstrate that NEGSO (3.5%) could be used as a new strategy in enhancing sperm functionality, potential fertility and reducing the oxidative damage and apoptosis markers. This could be significantly applicable for sperm physiology cryopreservation in the milieu of assisted reproduction systems.


Asunto(s)
Bison , Lino , Aceites Volátiles , Olea , Preservación de Semen , Vitis , Embarazo , Femenino , Masculino , Animales , Análisis de Semen/veterinaria , Búfalos/fisiología , Motilidad Espermática , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Semillas , Espermatozoides/fisiología , Criopreservación/veterinaria , Criopreservación/métodos , Aceites Volátiles/farmacología , Crioprotectores/farmacología
13.
Saudi Pharm J ; 31(8): 101691, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457368

RESUMEN

This work explored the activities of bergamot oil nano-emulsion (NBG) in modulating blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes in stressed rabbit bucks. Twenty-four mature rabbit bucks (5 months) were randomly divided into three groups; control group (NBG0) received 1 ml of distilled water, while the other two groups received NBG orally at doses of 50 and 100 mg/kg (bw) twice a week. The present study's findings revealed that treated groups had lower values of total and direct bilirubin, triglyceride, lactate dehydrogenase, and creatinine compared with NBG0 group (p < 0.05). NBG100 group recorded the greatest of total protein, albumin, GPx, T3 and T4 values as well as the lowest values of uric acid, MDA, and indirect bilirubin. Both treated groups showed significantly reduced 8-OhDG, Amyloid A, TLR 4, while significantly increased nitric oxide, IgA, IgM, TAC, and SOD levels. Semen characteristics such as volume, sperm count, sperm motility, normal sperm, and vitality were significantly higher in the NBG100 group compared to the NBG50 and NBG0 groups, whereas sperm abnormalities and dead sperm were significantly reduced. HSP70, HSP72, and HSPA9 gene overexpression showed that testicular integrity was maintained after buck received oral doses of 50 or 100 mg/kg of NBG. Existing findings indicate that oral administration of NBG improves heat tolerance in rabbit bucks primarily as e result of its antioxidant and anti-inflammatory effects.

14.
Biomed Pharmacother ; 164: 114967, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290189

RESUMEN

Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.


Asunto(s)
Antiinfecciosos , Lactoferrina , Humanos , Animales , Lactoferrina/farmacología , Lactoferrina/uso terapéutico , Relevancia Clínica , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Leche/metabolismo , Mamíferos , Genómica
15.
Sci Rep ; 13(1): 10621, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391447

RESUMEN

Buffalo sperm is sensitive to cryoinjuries, thus improving sperm cryoresistance is a critical approach for wide spreading the assisted reproductive technologies in buffalo. The intention of this work was to assess the effect of propolis-loaded in nanoliposomes (PRNL) supplementation of semen extender on semen quality, antioxidant status and some apoptotic genes of cryopreserved buffalo semen. PRNL were prepared using cholesterol (Chol) as well as soybean lecithin and their physicochemical properties were characterized. Egyptian buffalo bulls (4-6 years) were involved, and the semen samples were collected using the artificial vagina method. Buffalo semen was pooled (n = 25 ejaculates) and cryopreserved in tris extender containing PRNL at 0 (PRNL0), 2 (PRNL2), 4 (PRNL4) and 6 µg/mL (PRNL6), respectively. The PRNL had a size of 113.13 nm and a negative zeta potential (- 56.83 mV). Sperm progressive motility, viability, membrane integrity, abnormalities, chromatin damage, redox status, apoptosis status, and apoptotic genes were investigated after post-thawed buffalo semen. Using 2 or 4 µg/mL PRNL significantly increased sperm progressive motility, viability, and membrane integrity, while sperm abnormalities and the percentage of chromatin damages were the lowest in PRNL2 group. Moreover, the PRNL2 group exhibited the best results for all antioxidative activities (TAC, SOD, GPx and CAT) with significantly higher levels than the other groups (P < 0.05). The levels of ROS and MDA were significantly lower in the PRLN2 compared with other groups. The sperm caspase 3 enzyme activities showed the lowest values in PRNL2 groups followed by PRNL4 and PRNL6 groups with significant differences compared with the control. Adding 2 µg/mL PRNL to freezing media significantly reduced apoptotic genes such as Bax and Caspase 3 in sperm, while significantly increase in Bcl2 expression compared with the control (P < 0.001). The expression of Bcl2, Caspase 3 and Bax genes in sperm were not affected by the 6 µg/mL PRNL addition (P > 0.05). The electron micrography descriptions exemplified that the fortification of 2 or 4 µg/mL PRNL maintained the acrosomal and plasma membrane integrities as well as sustained the ultrastructure integrity of the cryopreserved buffalo spermatozoa when compared with control group, whereas the 6 µg/mL of PRNL demonstrated highest injury to the acrosome and plasma membranes. Results show supplementation of the buffalo freezing extender with 2 or 4 µg/mL of PRNL enhanced post-thawed sperm quality via boosting the antioxidant indices, diminishing the oxidative stress and apoptosis as well as maintained the ultrastructure integrity of frozen-thawed buffalo sperm.


Asunto(s)
Ascomicetos , Bison , Própolis , Masculino , Femenino , Animales , Caspasa 3 , Própolis/farmacología , Análisis de Semen , Antioxidantes/farmacología , Proteína X Asociada a bcl-2 , Semillas , Criopreservación/veterinaria , Cromatina
16.
Res Vet Sci ; 155: 36-43, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634540

RESUMEN

Heat stress (HS) is one of the most severe hurdles impacting rabbit growth, immunity, homeostasis, and productivity. Alginate oligosaccharides (AOS) have considerable beneficial effects due to their plausible antioxidant and immune-stimulatory properties. This work was planned to explore the preventive function of AOS as a new bio-feed additive against the harmful effects caused by environmental HS on growing rabbits. Rabbits were allotted in four experimental groups (25 animals in each group) and fed on a basal diet supplemented with 0.0 (AOS0), 50 (AOS50), 100 (AOS100), and 150 (AOS150) mg AOS/kg diet reared under summer conditions. Dietary AOS supplementation improved significantly (P ≤ 0.001) feed conversion rate, while both AOS100 and AOS150 significantly (P ≤ 0.001) enhanced the final body weight and body weight gain. All AOS addition significantly increased nitric oxide and lysosome activity and significantly reduced interferon-gamma (IFNγ) compared with those in the control group. Tumor necrosis factor α (TNFα), interleukin1ß (IL-1ß), myeloperoxidase and protein carbonyl levels were significantly reduced in rabbits fed diets containing AOS (100 and 150 mg/kg) compared with those in the control group under heat stress conditions. In addition, glutathione (GSH) and catalase (CAT) were significantly (P ≤ 0.001) improved with increasing AOS dietary levels compared with the control group. Still, total antioxidant capacity (TAC), malondialdehyde (MDA), hematocrit, mean corpuscular volume (MCV), eosinophils, and lymphocytes did not change. Erythrocyte's indices improved significantly (P ≤ 0.001), while neutrophils and white blood cell counts were decreased by dietary AOS inclusion. Immunological (IgM and IgG) were markedly reduced in AOS-treated groups compared with the control group. The current investigation exemplified that AOS as a novel bio-feed additive that could be an effective strategy to extenuate prejudicial effects in heat-stressed rabbits via enhancing immunity, and antioxidant defence system, further regulating the inflammation cytokines.


Asunto(s)
Alginatos , Antioxidantes , Conejos , Animales , Antioxidantes/farmacología , Temperatura , Suplementos Dietéticos/análisis , Dieta/veterinaria , Glutatión/metabolismo , Peso Corporal , Alimentación Animal/análisis
17.
Vet Res Commun ; 47(3): 1015-1029, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36658448

RESUMEN

Aquaculture is an important food sector throughout the globe because of its importance in ensuring the availability of nutritious and safe food for human beings. In recent years, this sector has been challenged with several obstacles especially the emergence of infectious disease outbreaks. Various treatment and control aspects, including antibiotics, antiseptics, and other anti-microbial agents, have been used to treat farmed fish and shrimp against diseases. Nonetheless, these medications have been prohibited and banned in many countries because of the development of antimicrobial-resistant bacterial strains, the accumulation of residues in the flesh of farmed fish and shrimp, and their environmental threats to aquatic ecosystems. Therefore, scientists and researchers have concentrated their research on finding natural and safe products to control disease outbreaks. From these natural products, bovine lactoferrin can be utilized as a functional feed supplement. Bovine lactoferrin is a multi-functional glycoprotein applied in various industries, like food preservation, and numerous medications, due to its non-toxic and ecological features. Recent research has proposed multiple advantages and benefits of using bovine lactoferrin in aquaculture. Reports showed its potential ability to enhance growth, reduce mortalities, regulate iron metabolism, decrease disease outbreaks, stimulate the antioxidant defense system, and recuperate the overall health conditions of the treated fish and shrimp. Besides, bovine lactoferrin can be considered as a safe antibiotic alternative and a unique therapeutic agent to decrease the negative impacts of infectious diseases. These features can be attributed to its well-known antibacterial, anti-parasitic, anti-inflammatory, immunostimulatory, and antioxidant capabilities. This literature review will highlight the implications of bovine lactoferrin in aquaculture, particularly highlighting its therapeutic features and ability to promote immunological defensive pathways in fish. The information included in this article would be valuable for further research studies to improve aquaculture's sustainability and the functionality of aquafeeds.


Asunto(s)
Antiinfecciosos , Lactoferrina , Humanos , Animales , Lactoferrina/farmacología , Lactoferrina/uso terapéutico , Antioxidantes , Ecosistema , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antibacterianos
18.
Trop Anim Health Prod ; 55(1): 55, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715777

RESUMEN

Heat stress is the most major environmental element contributing to rabbit health problems and reduced production. It is proposed that essential oils be applied to alleviate heat stress-induced oxidative damage in rabbits. The purpose of this feeding trial was to determine the protective impact of pumpkin seed essential oil (PSO)-supplemented diets in reducing the threat of unambient temperature on growing rabbits. Five groups of 5-week-old rabbits were allocated randomly into separated galvanized wire battery. The first group was raised under normal conditions (18 ± 2 °C) and fed a control diet (control group; CNT), whereas the other four groups were exposed to high ambient temperature (38 ± 2 °C) and fed a control diet supplemented with 0 (PSO0.0), 0.5 (PSO0.05), 1.0 (PSO1.0), and 2.0 (PSO2.0) mL PSO/kg diet. Results indicated that all supplemented groups and the positive control have higher live body weight compared with the heat stress group (PSO0.0) at 9 weeks of age. Supplementing of PSO resulted in significant improvement in weight gain at 5-9 weeks and 9-13 weeks compared with PSO0.0 group. The highest feed intake was detected in PSO0.05 group compared with that in other groups. Both PSO2.0 and PSO2.0 groups showed the lowest feed conversion ration compared with other groups. Heat-stressed rabbits given a high dose of PSO (1 to 2 mL) had higher hemoglobin concentrations and lower white blood cell counts throughout the experiment than those given a control diet and subjected to heat stress. All hepatic and renal function parameters improved significantly in the rabbits fed a high dose of PSO as compared to the heat-stressed control group, while protein constituents were significantly higher in experimental groups fed 2 mL PSO compared with other groups. Heat-stressed rabbits administered graded amounts of PSO had the lowest plasma glucose, cortisol, thyroid, and corticosterone concentrations and were noticed to be equivalent to the control group fed unsupplemented diet and reared under normal conditions. The immunohistochemistry analysis demonstrated that rabbit groups reared under heat stress and given 2 mL PSO supplemented diets had negative caspase-3 immunoreactivity surrounding portal tract and normal structure. In conclusion, adding pumpkin seed oil up to 2 mL/kg diet for growing rabbits is indorsed to promote growth as well as antioxidant and immunological status under heat stress conditions.


Asunto(s)
Antioxidantes , Cucurbita , Conejos , Animales , Antioxidantes/metabolismo , Cucurbita/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Respuesta al Choque Térmico , Aceites de Plantas/farmacología , Inmunidad , Alimentación Animal/análisis
19.
Reprod Domest Anim ; 58(2): 191-206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36337040

RESUMEN

Quercetin is one of the most used antioxidant flavonoids and largely exists in many fruits and vegetables because of its capability to scavenge the free reactive oxygen species (ROSs) by repressing lipid peroxy radical fusion, metal ion chelating through enzyme inhibition, and adopting the repair mechanisms. It also exhibits various biological actions, including antioxidative, anti-inflammatory and antimicrobial activities. Furthermore, it contributes well to sustaining the endogenous cellular antioxidant defence system. The process of cryopreservation is associated with increased oxidative stress, and some steps are potential sources of ROSs, including the method of semen collection, handling, cryopreservation culture media, and thawing, which result in impaired sperm function. Several antioxidants have been proposed to counteract the harmful impact of ROS during semen cryopreservation. The antioxidant capability of quercetin has been verified in different animal species for providing valuable defence to sperm during the cryopreservation process. The beneficial properties of quercetin on various parameters of fresh and post-thaw sperm in different species are clarified in this review. More in-depth investigations are required to clarify quercetin's mechanism of action in different animal species.


Asunto(s)
Quercetina , Preservación de Semen , Masculino , Animales , Quercetina/farmacología , Antioxidantes/farmacología , Semen , Animales Domésticos , Motilidad Espermática , Crioprotectores/farmacología , Espermatozoides , Criopreservación/veterinaria , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria
20.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 948-969, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35934925

RESUMEN

In the era of intensification of fish farms, the high-fat diet (HFD) has been applied to promote growth and productivity, provide additional energy and substitute partial protein in fish feeds. Certainly, HFD within specific concentrations was found to be beneficial in boosting fish performance throughout a short-term feeding. However, excessive dietary fat levels displayed vast undesirable impacts on growth, feed efficiency, liver function, antioxidant capacity and immune function and finally reduced the economic revenue of cultured fish. Moreover, studies have shown that fish diets containing a high level of fats resulted in increasing lipid accumulation, stimulated endoplasmic reticulum stress and suppressed autophagy in fish liver. Investigations showed that HFD could impair the intestinal barrier of fish via triggering inflammation, metabolic disorders, oxidative stress and microbiota imbalance. Several approaches have been widely used for reducing the undesirable influences of HFD in fish. Dietary manipulation could mitigate the adverse impacts triggered by HFD, and boost growth and productivity via reducing blood lipids profile, attenuating oxidative stress and hepatic lipid deposition and improving mitochondrial activity, immune function and antioxidant activity in fish. As well, dietary feed additives have been shown to decrease hepatic lipogenesis and modulate the inflammatory response in fish. Based on the literature, previous studies indicated that phytochemicals could reduce apoptosis and enhance the immunity of fish fed with HFD. Thus, the present review will explore the potential hazards of HFD on fish species. It will also provide light on the possibility of employing some safe feed additives to mitigate HFD risks in farmed fish.


Asunto(s)
Dieta Alta en Grasa , Grasas de la Dieta , Animales , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Grasas de la Dieta/metabolismo , Hígado/metabolismo , Antioxidantes/metabolismo , Lípidos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...